Talk to us?

Pharmacology - NEETMDS- courses
NEET MDS Lessons
Pharmacology

Uses of NSAIDs

NSAIDs are usually indicated for the treatment of acute or chronic conditions where pain and inflammation are present. Research continues into their potential for prevention of colorectal cancer, and treatment of other conditions, such as cancer and cardiovascular disease.

NSAIDs are generally indicated for the symptomatic relief of the following conditions.

rheumatoid arthritis, osteoarthritis, inflammatory arthropathies (e.g. ankylosing spondylitis, psoriatic arthritis, Reiter's syndrome), acute gout, dysmenorrhoea, metastatic bone pain ,headache and migraine, postoperative pain, mild-to-moderate pain due to inflammation and tissue injury, pyrexia, renal colic

Aspirin, the only NSAID able to irreversibly inhibit COX-1, is also indicated for inhibition of platelet aggregation; an indication useful in the management of arterial thrombosis and prevention of adverse cardiovascular events.

Barbiturates (BARBS): 

were used for antianxiety, sedation but now replaced by BZs; for IV sedation & oral surgery

Advantages: effective and relatively inexpensive (common in third world countries), extensively studied so have lots of information about side effects/toxicity

Peripheral effects: respiratory depression (with ↑ dose), CV effects (↓ BP and HR at sedative-hypnotic doses), liver effects (bind CYP450 → induction of drug metabolism and other enzymes → ↑ metabolism of steroids, vitamins K/D, cholesterol, and bile salts)

General mechanisms: potently depress neuron activity in the reticular formation (pons, medulla) and cortex 
o    Bind barbiturate site on GABAA receptor → enhanced inhibitory effect and ↑ Cl influx; → ↓ frequency of Cl channel opening but ↑ open time of Cl channels (in presense of GABA) so more Cl enters channel (at high [ ] they directly ↑ Cl conductance in absence of GABA- act as GABA mimetics)

Metabolism: liver microsomal drug metabolizing enzymes; most are dealkylated, conjugated by glucoronidation; renal excretion

Uses: anticonvulsant, preoperative sedation, anesthesia

Side effects: sedation, confusion, weight gain, N/V, skin rash

Contraindications: pain (can ↑ sensitivity to painful situations → restlessness, excitement, and delirium) and pulmonary insufficiency (since BARBS → respiratory depression)

Drug interactions: have additive depressant affects when taken with other CNS depressants, enhance depressive effects (of antipsychotics, antihistamines, antiHTNs, ethanol, and TCAs), and accelerates metabolism (of β blockers, Ca-channel blockers, corticosteroids, estrogens, phenothiazines, valproic acid, and theophylline; occurs with chronic BARB ingestion)

Acute toxicity: lower therapeutic index; can be fatal if OD; BARB poisoning a major problem (serious toxicity at only 10x hypnotic dose; → respiratory depression, circulatory collapse, renal failure, pulmonary complications which can be life-threatening)

Symptoms: severe respiratory depression, coma, severe hypotension, hypothermia

Treatment: support respiration and BP, gastric lavage (if recent ingestion)

Tolerance: metabolic (induce hepatic metabolic enzymes, occurs within a few days), pharmacodynamic (↓ CNS response with chronic exposure occurs over several weeks; unknown mechanism), and cross tolerance (tolerance to other general CNS depressants)

Physical dependence: develops with continued use; manifest by withdrawal symptoms (mild = anxiety, insomnia, dizziness, nausea; severe = vomiting, hyperthermia, tremors, delirium, convulsions, death)

Other similar agents: meprobamate (Equanil; pharmacological properties like BZs and barbiturates but mechanism unknown) and chloral hydrate (common sedative in pediatric dentistry for diagnostic imaging; few adverse effects but low therapeutic index)

Other drugs for antianxiety: β-adrenoceptor blockers (e.g., propranolol; block autonomic effects- palpitations, sweating, shaking; used for disabling situational anxiety like stage fright), buspirone (partial agonist at serotonin 1A receptor, produces only anxiolytic effects so no CNS depression, dependence, or additive depression with ethanol but onset of action is 1-3 weeks), lodipem (not a BZ but does act at BZ receptors)

Histamine: 

Involved in inflammatory and anaphylactic reactions 
Local application causes swelling redness, and edema, mimicking a mild inflammatory reaction.

Large systemic doses leads to profound vascular changes similar to those seen after shock or anaphylactic origin.

Storage: widely distributed; in tissues, primarily in mast cells; in blood- in basophils, platelets; non-mast cell sites (epidermis, CNS, regenerating cells)

Histamine Stored in complex with:
Heparin
Chondroitin Sulfate
Eosinophilic Chemotactic Factor
Neutrophilic Chemotactic Factor
Proteases

Release: during type I (IgE-mediated) immediate hypersensitivity rxns, tissue injury, in response to some drugs
a.    Process: Fcε receptor on mast cell or basophil binds IgE, when Ag binds → ↑ PLC activity → histamine

Symptoms: bronchoconstriction, ↓ Pa, ↑ capillary permeability, edema

Action

H1 receptors are located mainly on smooth muscle cells in blood vessels and the respiratory and GI tracts. When histamine binds with these receptors producing the following effects.

-Contraction of smooth muscle in the bronchi and bronchioles producing bronchoconstraction.

-stimulation of vagus nerve endings to produce reflex bronchoconstraction and cough.

-Increased permeability of veins and capillaries, which allows fluid to flow into subcutaneous tissues and form edema (little lower blood pressure).

-Increased secretion of mucous glands. Mucosal edema and increased nasal mucus produce the nasal congestion characteristic of allergic rhinitis and the common cold.

-Stimulation of sensory peripheral nerve endings to cause pain and pruritus.

Histamine promotes vasodilation by causing vascular endothelium to release nitric oxide. This chemical signal diffuses to the vascular smooth muscle, where it stimulates cyclic guanosine monophosphate production, causing vasodilation.


H2-receptors present mostly in gastric glands and smooth muscle of some blood vessels. When receptors are stimulated, the main effects are increased secretion of gastric acid and pepsin, increased rate and force of myocardial contraction.

The H3-receptor functions as a negative-feedback mechanism to inhibit histamine synthesis and release in many body tissues. Stimulation of H3 receptors opposes the effects produced by stimulation of H1 receptors.

The H4- receptor is expressed in only a few cell types, and their role in drug action is unclear.

Drugs cause release of histamine: 

Many drugs can cause release of histamine in the body.
-Intracutaneouse morphine injection in humans produced localized redness, localized edema and a diffuse redness. This is due to release of histamine.

-I.V. inj of curare may cause bronchial constriction due to release of histamine.

-codeine , papaverine, meperidine (pethedine), atropine, hydralizine and sympathomimetic amines, histamine releases by these drugs may not be significant unless they are administered I.V in large doses

Pharmacological effects

-  If injected I.V. (0.1 mg of histamine) causes a sharp decline in the blood pressure, flushing of the face and headache. 
- There is also stimulation of gastric acid secretion. 
- If this injection is given to an asthmatic individual, there will be a marked decrease in vital capacity and a sever attack of asthma. 

Circulatory effects of histamine:

The two factors involved in the circulatory action of histamine are:
Arteriolar dilatation and
Capillary permeability
So it leads to loss of plasma from circulation

Effect on gastric secretion:
Histamine is a potent stimulant of gastric Hcl secretion. 

PLASMA FRACTIONS:

a) Fresh frozen plasma.

b) Platelets.

c) Plasma concentrates.

d) Non-plasma recombinant factor concentrates.

Use of local anesthetics during pregnancy

Local anesthetics (injectable)

Drug                                                   FDA category

Articaine                                             C

Bupivacaine                                        C

Lidocaine                                            B

Mepivacaine                                        C

Prilocaine                                            B

Vasoconstrictors

Epinephrine 1:200,000 or 1:100,000 C (higher doses)

Levonordefrin 1:20,000 Not ranked

Local anesthetics (topical)

Benzocaine                                        C

Lidocaine                                            B

RENIN-ANGIOTENSIN SYSTEM INHIBITORS

The actions of Angiotensin II include an increase in blood pressure and a stimulation of the secretion of aldosterone (a hormone from the adrenal cortex) that promotes sodium retention. By preventing the formation of angiotensin II, blood pressure will be reduced. This is the strategy for development of inhibitors. Useful inhibitors of the renin-angiotensin system are the Angiotensin Converting Enzyme Inhibitors 

First line treatment for: Hypertension , Congestive heart failure [CHF] 

ACE-Inhibitor’s MOA (Angiotensin Converting Enzyme Inhibitors)

Renin-Angiotensin Aldosterone System: 
. Renin & Angiotensin = vasoconstrictor 
. constricts blood vessels & increases BP 
. increases SVR or afterload 
. ACE Inhibitors blocks these effects decreasing SVR & afterload 
 
. Aldosterone = secreted from adrenal glands 
. cause sodium & water reabsorption 
. increase blood volume 
. increase preload 
. ACE I  blocks this and decreases preload 

Types 

Class I: captopril 
Class II (prodrug) : e.g., ramipril, enalapril, perindopril 
Class III ( water soluble) : lisinopril. 

Mechanism of Action 

Inhibition of circulating and tissue angiotensin- converting enzyme. 
Increased formation of bradykinin and vasodilatory prostaglandins. 
Decreased secretion of aldosterone; help sodium excretion. 

Advantages 

- Reduction of cardiovascular morbidity and mortality in patients with atherosclerotic vascular disease, diabetes, and heart failure. 
- Favorable metabolic profile. 
- Improvement in glucose tolerance and insulin resistance. 
- Renal glomerular protection effect especially in diabetes mellitus. 
- Do not adversely affect quality of life. 

Indications 
- Diabetes mellitus, particularly with nephropathy. 
- Congestive heart failure. 
- Following myocardial infraction. 

Side Effects  

- Cough (10 - 30%): a dry irritant cough with tickling sensation in the throat. 
- Skin rash (6%). 
- Postural hypotension in salt depleted or blood volume depleted patients. 
- Angioedema (0.2%) : life threatening. 
- Renal failure: rare, high risk with bilateral renal artery stenosis. 
- Hyperkalaemia 
- Teratogenicity. 

Considerations 
- Contraindications include bilateral renal artery stenosis, pregnancy, known allergy, and hyperkalaemia. 
- High serum creatinine (> 3 mg/dl) is an indication for careful monitoring of renal function, and potassium. Benefits can still be obtained in spite of renal insufficiency. 
- A slight stable increase in serum creatinine after the introduction of ACE inhibitors does not limit use. 
- ACE-I are more effective when combined with diuretics and moderate salt restriction. 
 

ACE inhibitors drugs

Captopril 50-150 mg       
Enalapril 2.5-40 mg
Lisinopril 10-40 mg
Ramipril 2.5-20  mg        
Perindopril 2-8  mg

Angiotensin Receptor Blocker  

Losartan    25-100 mg 
Candesartan 4-32  mg
Telmisartan 20-80 mg

Mechanism of action 

They act by blocking type I angiotensin II receptors generally, producing more blockade of the renin -angiotensin - aldosterone axis. 

Advantages 

• Similar metabolic profile to that of ACE-I. 
• Renal protection. 
• They do not produce cough. 

Indications 

Patients with a compelling indication for ACE-I and who can not tolerate them because of cough or allergic reactions. 

Benzylpenicillin (penicillin G)

Benzylpenicillin, commonly known as penicillin G, is the gold standard penicillin. Penicillin G is typically given by a parenteral route of administration because it is unstable to the hydrochloric acid of the stomach.

Indications :

bacterial endocarditis, meningitis, aspiration pneumonia, lung abscess,community-acquired pneumonia, syphilis, septicaemia in children

Explore by Exams