Talk to us?

- NEETMDS- courses
NEET MDS Lessons
Pharmacology

OXYMETAZOLINE
 

It is a directly acting sympathomimetic amine used in symptomatic relief in nasal congestion which increases mucosal secretion.

It is used:
- As a nasal decongestant in allergic rhinitis, with or without the addition of antazoline or sodium chromoglycate. 
- As an ocular decongestant in allergic conjunctivitis.

Compounds like naphazoline and xylometazoline are relatively selective α2 agonists, which on topical application produce local vasoconstriction.

Amphotericin B

Main use is in systemic fungal infections (e.g. in immunocompromised patients), and in visceral leishmaniasis. Aspergillosis, cryptococcus infections (e.g. meningitis) and candidiasis are treated with amphotericin B. It is also used empirically in febrile immunocompromised patients who do not respond to broad-spectrum antibiotics.

MOA:

As with other polyene antifungals, amphotericin B associates with ergosterol, a membrane chemical of fungi, forming a pore that leads to K+ leakage and fungal cell death

Side effects: nephrotoxicity (kidney damage) , headache, vomiting, convulsions and fever

The side-effects are much milder when amphotericin B is delivered in liposomes

Classification

1. Natural Alkaloids of Opium

Phenanthrenes -> morphine, codeine, thebaine

Benzylisoquinolines -> papaverine, noscapine

2. Semi-synthetic Derivatives

diacetylmorphine (heroin) hydromorphone, oxymorphone hydrocodone, oxycodone

3. Synthetic Derivatives

phenylpiperidines pethidine, fentanyl, alfentanyl, sufentnyl

benzmorphans pentazocine, phenazocine, cyclazocine

propionanilides methadone

morphinans levorphanol

Gastric acid secretion inhibitors (antisecretory drugs):

 HCl is secreted by parietal cells of the gastric mucosa which contain receptors for acetylcholine (muscarinic receptors: MR), histamine (H2R), prostaglandins (PGR) and gastrin (GR) that stimulate the production, except PGs which inhibit gastric acid production.
 
Therefore, antagonists of acetylcholine, histamine and gastrin inhibit gastric acid secretion (antisecretory). On the other hand, inhibitors of PGs biosynthesis such as NSAIDs with reduce cytoprotective mechanisms and thus promote gastric mucosal erosion. Also, the last step in gastric acid secretion from parietal cells involve a pump called H+ -K+-ATPase (proton pump). Drugs that block this pump will inhibit gastric acid secretion. Antisecretory drugs include:

1. Anticholinergic agents such as pirenzepine, dicyclomine, atropine.
2. H2-receptors blocking agents such as Cimetidine, Ranitidine, Famotidine, Nizatidine (the pharmacology of these agents has been discussed previously).
3. Gastrin-receptor blockers such as proglumide.
4. Proton pump inhibitors such as omeprazole, lansoprazole.

Major clinical indications of antisecretory drugs:

• Prevention & treatment of peptic ulcer disease.
• Zollinger Ellison syndrome.
• Reflux esophagitis. 

DIURETICS

The basis for the use of diuretics is to promote sodium depletion (and thereby water) which leads to a decrease in extracellular fluid volume.
An important aspect of diuretic therapy is to prevent the development of tolerance to other antihypertensive drugs.

TYPES OF DIURETICS
A. Thiazide Diuretics examples include     chlorothiazide 
hydrochlorothiazide 
a concern with these drugs is the loss of potassium as well as sodium

B. Loop Diuretics (High Ceiling Diuretics) examples include 
furosemide (Lasix)
bumetanide
these compounds produce a powerful diuresis and are capable of producing severe derangements of electrolyte balance

C. Potassium Sparing Diuretics examples include
triamterene
amiloride 
spironolactone 
unlike the other diuretics, these agents do not cause loss of potassium

Mechanism of Action

Initial effects: through reduction of plasma volume and cardiac output.
Long term effect: through decrease in total peripheral vascular resistance.

Advantages

Documented reduction in cardiovascular morbidity and mortality.
Least expensive antihypertensive drugs.
Best drug for treatment of systolic hypertension and for hypertension in theelderly.
Can be combined with all other antihypertensive drugs to produce synergetic effect.

Side Effects
Metabolic effects (uncommon with small doses): hypokalemia,hypomagnesemia, hyponatremia, hyperuricemia, dyslipidemia (increased total
and LDL cholesterol), impaired glucose tolerance, and hypercalcemia (with thiazides).
Postural hypotension.
Impotence in up to 22% of patients.  

 Considerations
- Moderate salt restriction is the key for effective antihypertensive effect of diuretics and for protection from diuretic - induced hypokalaemia. 
- Thiazides are not effective in patients with renal failure (serum creatinine > 2mg /dl) because of reduced glomerular filtration rate.
- Frusemide needs frequent doses ( 2-3 /day ).Thiazides can be given once daily or every other day.
- Potassium supplements should not be routinely combined with thiazide or loop diuretics. They are indicated with hypokalemia (serum potassium < 3.5 mEq/L) especially with concomitant digitalis therapy or left ventricular hypertrophy.
- Nonsteroidal antiinflammatory drugs can antagonize diuretics effectiveness.

Special Indications

Diuretics should be the primary choice in all hypertensives.

They are indicated in:
- Volume dependent forms of hypertension: blacks, elderly, diabetic, renal and obese hypertensives.
- Hypertension complicated with heart failure.
- Resistant hypertension: loop diuretics in large doses are recommended.
- Renal impairment: loop diuretics

Drug-Receptor Interactions

Drug Receptor:  any functional macromolecule in a cell to which a drug binds to produce its effects.  at receptors, drugs mimic or block the action of the body's own regulatory molecules.  

Receptors and Selectivity of Drug Action : If a drug interacts with only one kind of receptor, and if that receptor regulates just a few processes, then the effects of the drug will be limited.

Even though a drug is selective for one type of receptor, it can still produce a variety of effects.

Selectivity does not guarantee safety.

Theories of Drug-Receptor Interaction

- Simple Occupancy Theory:  Two factors - The intensity of the response to a drug is proportional to the number of receptors occupied by that drug, and the maximal response will occur when all available receptors have been occupied.

- Modified Occupancy Theory:  Assumes that all drugs acting at a particular receptor are identical with respect to the ability to bind to the receptor and the ability to influence receptor function once binding has taken place.

•    Affinity:  The strength of the attraction between a drug and its receptor.  Affinity is reflected in potency.  (Drugs with high affinity are very potent).

•    Intrinsic Activity:  The ability of a drug to activate a receptor following binding.  Reflected in the maximal efficacy (drugs with high intrinsic activity have high maximal efficacy).

GLP-1 analogs

Exenatide

Mechanism

GLP-1 is an incretin released from the small intestine that aids glucose-dependent insulin secretion
basis for drug mechanism is the observation that more insulin secreted with oral glucose load compared to IV 

Exenatide is a GLP-1 agonist

↑ insulin
↓ glucagon release
the class of dipeptidyl peptidase inhibitors ↓ degradation of endogenous GLP-1
e.g.) sitagliptin, -gliptins 
 

Clinical use
type II DM

 

Toxicity
nausea, vomiting
pancreatitis
hypoglycemia
if given with sulfonylureas

Explore by Exams