Talk to us?

Pharmacology - NEETMDS- courses
NEET MDS Lessons
Pharmacology

Serotonin-norepinephrine reuptake inhibitors(SNRIs)

e.g. venlafaxine and duloxetine
- Inhibit the reuptake of both 5-HT and norepinephrine 
- Has a more favourable adverse effect profile than TCAs

Norepinephrine reuptake inhibitor

e.g. bupropion, reboxetine

Monoamine receptor antagonists

e.g. mirtazapine, trazodone, mianserin

Chloral hydrate

1. Short-acting sleep inducer—less risk of “hangover” effect the next day.
2. Little change on REM sleep.
3. Metabolized to trichloroethanol, an active metabolite; further metabolism inactivates the drug.
4. Used for conscious sedation in dentistry.
5. Can result in serious toxicity if the dose is not controlled.

Histamine: 

Involved in inflammatory and anaphylactic reactions 
Local application causes swelling redness, and edema, mimicking a mild inflammatory reaction.

Large systemic doses leads to profound vascular changes similar to those seen after shock or anaphylactic origin.

Storage: widely distributed; in tissues, primarily in mast cells; in blood- in basophils, platelets; non-mast cell sites (epidermis, CNS, regenerating cells)

Histamine Stored in complex with:
Heparin
Chondroitin Sulfate
Eosinophilic Chemotactic Factor
Neutrophilic Chemotactic Factor
Proteases

Release: during type I (IgE-mediated) immediate hypersensitivity rxns, tissue injury, in response to some drugs
a.    Process: Fcε receptor on mast cell or basophil binds IgE, when Ag binds → ↑ PLC activity → histamine

Symptoms: bronchoconstriction, ↓ Pa, ↑ capillary permeability, edema

Action

H1 receptors are located mainly on smooth muscle cells in blood vessels and the respiratory and GI tracts. When histamine binds with these receptors producing the following effects.

-Contraction of smooth muscle in the bronchi and bronchioles producing bronchoconstraction.

-stimulation of vagus nerve endings to produce reflex bronchoconstraction and cough.

-Increased permeability of veins and capillaries, which allows fluid to flow into subcutaneous tissues and form edema (little lower blood pressure).

-Increased secretion of mucous glands. Mucosal edema and increased nasal mucus produce the nasal congestion characteristic of allergic rhinitis and the common cold.

-Stimulation of sensory peripheral nerve endings to cause pain and pruritus.

Histamine promotes vasodilation by causing vascular endothelium to release nitric oxide. This chemical signal diffuses to the vascular smooth muscle, where it stimulates cyclic guanosine monophosphate production, causing vasodilation.


H2-receptors present mostly in gastric glands and smooth muscle of some blood vessels. When receptors are stimulated, the main effects are increased secretion of gastric acid and pepsin, increased rate and force of myocardial contraction.

The H3-receptor functions as a negative-feedback mechanism to inhibit histamine synthesis and release in many body tissues. Stimulation of H3 receptors opposes the effects produced by stimulation of H1 receptors.

The H4- receptor is expressed in only a few cell types, and their role in drug action is unclear.

Drugs cause release of histamine: 

Many drugs can cause release of histamine in the body.
-Intracutaneouse morphine injection in humans produced localized redness, localized edema and a diffuse redness. This is due to release of histamine.

-I.V. inj of curare may cause bronchial constriction due to release of histamine.

-codeine , papaverine, meperidine (pethedine), atropine, hydralizine and sympathomimetic amines, histamine releases by these drugs may not be significant unless they are administered I.V in large doses

Pharmacological effects

-  If injected I.V. (0.1 mg of histamine) causes a sharp decline in the blood pressure, flushing of the face and headache. 
- There is also stimulation of gastric acid secretion. 
- If this injection is given to an asthmatic individual, there will be a marked decrease in vital capacity and a sever attack of asthma. 

Circulatory effects of histamine:

The two factors involved in the circulatory action of histamine are:
Arteriolar dilatation and
Capillary permeability
So it leads to loss of plasma from circulation

Effect on gastric secretion:
Histamine is a potent stimulant of gastric Hcl secretion. 

Lithium carbonate: 1st choice (controls mania in bipolar disorders); delay before onset of therapeutic benefit; no psychotropic effects in normal humans

i. Mechanism: blocks enzymes in inositol phosphate signaling pathway; no consistent effects of lithium on NE, 5-HT, and DA
ii. Side effects: severe CNS (ataxia, delirium, coma, convulsions) and CV (cardiac dysrhythmias)

Methadone

Pharmacology and analgesic potency similar to morphine.

  • Very effective following oral administration.
  • Longer duration of action than morphine due to plasma protein binding (t1/2 approximately 25 hrs).
  • Used in methadone maintenance programs for drug addicts and for opiate withdrawal. Opiate withdrawal is more prolonged but is less intense than it is following morphine or heroin.

Ketoprofen

It acts by inhibiting the body's production of prostaglandin.

Uses of NSAIDs

NSAIDs are usually indicated for the treatment of acute or chronic conditions where pain and inflammation are present. Research continues into their potential for prevention of colorectal cancer, and treatment of other conditions, such as cancer and cardiovascular disease.

NSAIDs are generally indicated for the symptomatic relief of the following conditions.

rheumatoid arthritis, osteoarthritis, inflammatory arthropathies (e.g. ankylosing spondylitis, psoriatic arthritis, Reiter's syndrome), acute gout, dysmenorrhoea, metastatic bone pain ,headache and migraine, postoperative pain, mild-to-moderate pain due to inflammation and tissue injury, pyrexia, renal colic

Aspirin, the only NSAID able to irreversibly inhibit COX-1, is also indicated for inhibition of platelet aggregation; an indication useful in the management of arterial thrombosis and prevention of adverse cardiovascular events.

Explore by Exams