Talk to us?

Pharmacology - NEETMDS- courses
NEET MDS Lessons
Pharmacology

Roxithromycin

It is used to treat respiratory tract, urinary and soft tissue infections. Roxithromycin is derived from erythromycin, containing the same 14-membered lactone ring. However, an N-oxime side chain is attached to the lactone ring.

Roxithromycin has similar antimicrobial spectrum as erythromycin, but is more effective against certain gram-negative bacteria, particularly Legionella pneumophilae.

When taken before a meal, roxithromycin is very rapidly absorbed, and diffused into most tissues and Phagocytes Only a small portion of roxithromycin is metabolised. Most of roxithromycin is secreted unchanged into the bile and some in expired air

Barbiturates


1. Long-acting. Phenobarbital is used to treat certain types of seizures (see section on antiepileptic drugs).
2. Intermediate-acting. Amobarbital, pentobarbital (occasionally used for sleep), secobarbital.
3. Short-acting. Hexobarbital, methohexital, thiopental—rarely used as IV anesthetics.

Chloramphenicol

derived from the bacterium Streptomyces venezuelae

Chloramphenicol is effective against a wide variety of microorganisms, but due to serious side-effects (e.g., damage to the bone marrow, including aplastic anemia) in humans, it is usually reserved for the treatment of serious and life-threatening infections (e.g., typhoid fever). It is used in treatment of cholera, as it destroys the

vibrios and decreases the diarrhoea. It is effective against tetracycline-resistant vibrios.It is also used in eye drops or ointment to treat bacterial conjunctivitis.

Mechanism and Resistance Chloramphenicol stops bacterial growth by binding to the bacterial ribosome (blocking peptidyl transferase) and inhibiting protein synthesis.

Chloramphenicol irreversibly binds to a receptor site on the 50S subunit of the bacterial ribosome, inhibiting peptidyl transferase. This inhibition consequently results in the prevention of amino acid transfer to growing peptide chains, ultimately leading to inhibition of protein formation.

Spectrum of activity: Broad-spectrum

Effect on bacteria: Bacteriostatic

Anti-Parkinson Drugs
The disease involves degeneration of dopaminergic neurons in the nigral-striatal pathway in the basal ganglia. The cause is usually unknown. Sometimes it is associated with hypoxia, toxic chemicals, or cerebral infections.

Strategy
1. Increase dopamine in basal ganglia.
2. Block muscarinic receptors in the basal ganglia, since cholinergic function opposes the action of dopamine in the basal ganglia.
3. Newer therapies, such as the use of β-adrenergic receptor blockers.


Drugs
a. L-dopa plus carbidopa (Sinemet).
b. Bromocriptine, pergolide, pramipexole, ropinirole.
c. Benztropine, trihexyphenidyl, biperiden, procyclidine.
d. Diphenhydramine.
e. Amantadine.
f. Tolcapone and entacapone.
g. Selegiline.


Mechanisms of action of three drugs affecting DOPA

1. L-dopa plus carbidopa:
L-dopa is able to penetrate the blood–brain barrier and is then converted into dopamine. Carbidopa inhibits dopa decarboxylase, which catalyzes the formation of dopamine.
Carbidopa does not penetrate the blood–brain barrier; it therefore prevents the conversion of L-dopa to dopamine outside the CNS but allows
the conversion of L-dopa to dopamine inside the CNS.

2. Bromocriptine, pergolide, pramipexole, and ropinirole are direct dopamine receptor agonists.
3. Benztropine, trihexyphenidyl, biperiden, and procyclidine are antimuscarinic drugs.
4. Diphenhydramine is an antihistamine that has antimuscarinic action.
5. Amantadine releases dopamine and inhibits neuronal uptake of dopamine.
6. Selegiline is an irreversible inhibitor of monoamine oxidase B (MAO-B), which metabolizes dopamine. Selegiline therefore increases the level of dopamine.
7. Tolcapone is an inhibitor of catechol-O-methyl transferase (COMT), another enzyme that metabolizes dopamine.
8. Entacapone is another COMT inhibitor.

Dopamine and acetylcholine.
 Loss of dopaminergic neurons in Parkinsonism leads to unopposed action by cholinergic neurons. Inhibiting muscarinic receptors can help alleviate symptoms of Parkinsonism

Adverse effects

1. L-dopa 
-  The therapeutic effects of the drug decrease with time.
- Oscillating levels of clinical efficacy of the drug (“on-off” effect).
- Mental changes—psychosis.
- Tachycardia and orthostatic hypotension.
- Nausea.
- Abnormal muscle movements (dyskinesias).

2. Tolcapone, entacapone (similar to L-dopa).

3. Direct dopamine receptor agonists (similar to L-dopa).

4. Antimuscarinic drugs
-  Typical antimuscarinic adverse effects such as dry mouth.

b. Sedation.

5. Diphenhydramine (see antimuscarinic drugs).

6. Amantadine
-  Nausea.
- Dizziness.
- Edema.
- Sweating.

7. Selegiline
- Nausea.
- Dry mouth.
- Dizziness.
- Insomnia.
- Although selegiline is selective for MAO-B, it still can cause excessive toxicity in the presence of tricyclic antidepressants, SSRIs, and meperidine.

Indications

Parkinson’s disease is the obvious major use of the above drugs. Parkinson-like symptoms can occur with many antipsychotic drugs. These symptoms are often treated with antimuscarinic drugs or diphenhydramine.

Dental implications of anti-Parkinson drugs
1. Dyskinesia caused by drugs can present a challenge for dental treatment.
2. Orthostatic hypotension poses a risk when changing from a reclining to a standing position.
3. The dentist should schedule appointments at a time of day at which the best control of the disease occurs.
4. Dry mouth occurs with several of the drugs.
 

Anticonvulsants: include carbamazepine (use when lithium not tolerated; may not be as effective) .

valproic acid (use when lithium not tolerated; rapid onset)

Prostaglandines:

Every cell in the body is capable of synthesizing one or more types of PGS. The four major group of PGs are E, F, A, and B.

Pharmacological actions:

stimulation of cyclicAMP production and calcium use by various cells

CVS
PGE2 acts as vasodilator; it is more potent hypotensive than Ach and histamine

Uterous
PGE2 and PGF2α Contract human uterus

Bronchial muscle

PGF2α and thromboxan A2 cause bronchial muscle contraction.

PGE2 & PGI2 cause bronchial muscle dilatation

GIT: PGE2 and PGF2α cause colic and watery diarrhoea

Platelets

Thromboxan A2 is potent induce of platelets aggregation

Kidney

PGE2 and PGI2 increase water, Na ion and K ion excretion (act as diuresis) that cause renal vasodilatation and inhibit
tubular reabsorption

USE
PGI2: Epoprostenol (inhibits platelets aggregation)
PGE1: Alprostadil (used to maintain the potency of arterioles in neonates with congenital heart defects).
PGE2: Dinoproste (used as pessaries to induce labor)
Synthetic analogue of PGE1: Misoprostol (inhibit the secretion of HCl).

Amphotericin B

Main use is in systemic fungal infections (e.g. in immunocompromised patients), and in visceral leishmaniasis. Aspergillosis, cryptococcus infections (e.g. meningitis) and candidiasis are treated with amphotericin B. It is also used empirically in febrile immunocompromised patients who do not respond to broad-spectrum antibiotics.

MOA:

As with other polyene antifungals, amphotericin B associates with ergosterol, a membrane chemical of fungi, forming a pore that leads to K+ leakage and fungal cell death

Side effects: nephrotoxicity (kidney damage) , headache, vomiting, convulsions and fever

The side-effects are much milder when amphotericin B is delivered in liposomes

Explore by Exams