NEET MDS Lessons
General Surgery
An ulcer is a break in the continuity of the skin or the mucous membrane.
Mode of onset: Traumatic ulcers heal when the traumatic agent is removed., If it persists it becomes chronic as in the case of dental ulcer of the tongue. Ulcers may develop spontaneously as in the case of gumma (syphilitic ulcer). It may develop with varicose veins called varicose ulcer, which develops in the lower third of the leg.
Sometimes a malignant ulcer develops in a scar called Marjolin’s ulcer. Special features are:
No pain - as there are no nerves. It does not spread - as there is scar tissue. No metastases - as there are no lymphatics Treatment:- Wide excision.
Classification of Ulcer
A) Pathologically
I. Non-specific ulcers:
a. Due to infected wound after trauma, that is physical or chemical agents.
b. Due to local infection example dental ulcer, pressure sore
Specific ulcers: Caused by specific infection
a. Syphilitic ulcers (Hunterian chancre)
b. Tubercular ulcers, actinomycosis
Trophic ulcer:- Caused by two factors:
Diminished nutrition due to inadequate blood supply to the tissues
Eg. Ulcers in Buerger’s Disease, Artherosclerosis
b. Diminished or absence of sensation of the skin leading to perforating ulcer of the foot
iv. Malignant ulcer: Due to squamous cell carcinoma, rodent ulcers and melanoma.
B) Clinical classification of ulcers
1. Acute Ulcer: The edge is inflamed oedematous and painful with slough in the floor and n o granulation tissue. Profuse purulent Discgarge seen
2. Healing ulcers: edge sloping with bluish margin The floor is covered with a red, healthy granulation tissue.
3. Chronic or callous ulcer (non- healing) There is no tendency to heal by itself, the base is jndurated unhealthy granulation tissue is present in the floor The edge is rounded and thickened.
Chronic ulcer occur due to:
Chronic infection , Defective circulation , Foreign body, Persistent local oedema , Malignancy , Diabetes , Malnutrition (loss of proteins), Gout
Specific Ulcers
Tubeculous Ulcer
Edge Undermined, floor contains granulation tissue a watery discharge is present. Caseous material is found in the floor of the ulcer. It usually occurs in tubercular lymphadenitis in the neck, axilla or groin.
Syphilitic Ulcer
a) Huntarian Chancre or primary sore or hard chancre: usuaIly occurs over the genitalia especially on penis. Occurs in the primary stage of syphilis Ulcer is round or oval, it is hard,indurated, elevated and painless It feels like a button, discharges serum containing spirochetes (cork screw) which is highly infective.
b) In the Secondary stage mucous patches and condylomata occurs The ulcers are shallow white patches, of sodden thickness which occur in the mouth and tongue. Condyloma are hypertrophied epithelium with serous discharge occurring in mucocutaneous junction around the anus. The regional lymphnod (inguinal transverse chain) are enlarged.
c) In tertiary stage of syphilis gummatous ulcers occur They have a punched out edge and wash Ieather floor. They occur on the subcutaneous bones like sternum and tibia. They are painless and refuse to heal.
Soft Sore (chanchroid)
They are painful muitiple ulcers, with copious discharge. They are caused by Bacillus Ducrey lncubation time is 3 to 4 days. located on glans penis and prepuce is due to venereal infection. They are associated with enlarged called bilateral inguinal lymphnodes
Tropical ulcer:
a) Oriental Sore - due to L. Tropica (lieshmaniasis)
b) Ulcers and sinuses are due to guinea worm abscess
c) Histoplasmosis with multiple ulcers on the tibia.
d) Chronic ulcers due to yaws
e) Amoebic ulcers occur in colon_and rectum , flask shaped ulcers , undermined edge , caused by Entamoeba Histolytica
Varicose Ulcer:
Associated with varicose veins. Occurs on the inner aspect of the lower third of leg , chronic ulcer The surrounding area is pigmented and eczema is present. The sore is longitudinally oval It does not penetrate the deep fascia and is painless The base is adherent to the periosteum of the tibia
Rodent ulcer
Usually Occurs on the face above a line joining the lobule of the ear to the angle of the mouth. Usually occurs at the inner canthous of the eye . Edge is raised and rolled, Erodes the deeper structures and the bone, the lyrnph nodes are not involved.
Treatment: If small wide excision is done with skin grafting, If large, radiotherapy is given.
Malignant Ulcer
Occurs due to chronic irritation as in the case of malignant ulcer of the tongue. The edge is everted. The floor is covered with slough and tumor tissue The regional lymph nodes are hard.
Initially mobile later becomes hard
Treatment: Wide excision is done.
Marjolin ulcer: Malignant Ulcer occurring on scar of Burns
SHOCK
Shock is defined as a pathological state causing inadequate oxygen delivery to the peripheral tissues and resulting in lactic acidosis, cellular hypoxia and disruption of normal metabolic condition.
CLASSIFICATION
Shock is generally classified into three major categories:
1. Hypovolemic shock
2. Cardiogenic shock
3. Distributive shock
Distributive shock is further subdivided into three subgroups:
a. Septic shock
b. Neurogenic shock
c. Anaphylactic shock
Hypovolemic shock is present when marked reduction in oxygen delivery results from diminished cardiac output secondary to inadequate vascular volume. In general, it results from loss of fluid from circulation, either directly or indirectly.
e.g. ? Hemorrhage
• Loss of plasma due to burns
• Loss of water and electrolytes in diarrhea
• Third space loss (Internal fluid shift into inflammatory exudates in
the peritoneum, such as in pancreatitis.)
Cardiogenic shock is present when there is severe reduction in oxygen delivery secondary to impaired cardiac function. Usually it is due to myocardial infarction or pericardial tamponade.
Septic Shock (vasogenic shock) develops as a result of the systemic effect of infection. It is the result of a septicemia with endotoxin and exotoxin release by gram-negative and gram-positive bacteria. Despite normal or increased cardiac output and oxygen delivery, cellular oxygen consumption is less than normal due to impaired extraction as a result of impaired metabolism.
Neurogenic shock results primarily from the disruption of the sympathetic nervous system which may be due to pain or loss of sympathetic tone, as in spinal cord injuries.
PATHO PHYSIOLOGY OF SHOCK
Shock stimulates a physiologic response. This circulatory response to hypotension is to conserve perfusion to the vital organs (heart and brain) at the expense of other tissues. Progressive vasoconstriction of skin, splanchnic and renal vessels leads to renal cortical necrosis and acute renal failure. If not corrected in time, shock leads to organ failure and sets up a vicious circle with hypoxia and acidosis.
CLINICAL FEATURES
The clinical presentation varies according to the cause. But in general patients with hypotension and reduced tissue perfusion presents with:
• Tachycardia
• Feeble pulse
• Narrow pulse pressure
• Cold extremities (except septic shock)
• Sweating, anxiety
• Breathlessness / Hyperventilation
• Confusion leading to unconscious state
PATHO PHYSIOLOGY OF SHOCK
Shock stimulates a physiologic response. This circulatory response to hypotension is to conserve perfusion to the vital organs (heart and brain) at the expense of other tissues. Progressive vasoconstriction of skin, splanchnic and renal vessels leads to renal cortical necrosis and acute renal failure. If not corrected in time, shock leads to organ failure and sets up a vicious circle with hypoxia and acidosis.
CLINICAL FEATURES
The clinical presentation varies according to the cause. But in general patients with hypotension and reduced tissue perfusion presents with:
• Tachycardia
• Feeble pulse
• Narrow pulse pressure
• Cold extremities (except septic shock)
• Sweating, anxiety
• Breathlessness / Hyperventilation
• Confusion leading to unconscious state
Neuromuscular Blockers in Cardiac Anesthesia
In patient on β-blockers, the choice of neuromuscular blockers (NMBs) is critical due to their potential cardiovascular effects. Here’s a detailed analysis of the implications of using fentanyl and various NMBs, particularly focusing on vecuronium and its effects.
Key Points on Fentanyl and β-Blockers
-
Fentanyl:
- Fentanyl is an opioid analgesic that can cause bradycardia due to its vagolytic activity. While it has minimal hemodynamic effects, the bradycardia it induces can be problematic, especially in patients already on β-blockers, which reduce heart rate and blood pressure.
-
β-Blockers:
- These medications reduce heart rate and blood pressure, which can compound the bradycardic effects of fentanyl. Therefore, careful consideration must be given to the choice of additional medications that may further depress cardiac function.
Vecuronium
-
Effects:
- Vecuronium is a non-depolarizing neuromuscular blocker that has minimal cardiovascular side effects when used alone. However, it can potentiate decreases in heart rate and cardiac index when administered after fentanyl.
- The absence of positive chronotropic effects (unlike pancuronium) means that vecuronium does not counteract the bradycardia induced by fentanyl, leading to a higher risk of significant bradycardia and hypotension.
-
Vagal Tone:
- Vecuronium may enhance vagal tone, further predisposing patients to bradycardia. This is particularly concerning in patients on β-blockers, as the combination can lead to compounded cardiac depression.
Comparison with Other Neuromuscular Blockers
-
Pancuronium:
- Vagolytic Action: Pancuronium has vagolytic properties that can help attenuate bradycardia and support blood pressure. It is often preferred in cardiac anesthesia for its more favorable hemodynamic profile compared to vecuronium.
- Tachycardia: While it can induce tachycardia, this effect may be mitigated in patients on β-blockers, which can blunt the tachycardic response.
-
Atracurium:
- Histamine Release: Atracurium can release histamine, leading to hemodynamic changes such as increased heart rate and decreased blood pressure. These effects can be minimized by slow administration of small doses.
-
Rocuronium:
- Minimal Hemodynamic Effects: Rocuronium is generally associated with a lack of significant cardiovascular side effects, although occasional increases in heart rate have been noted.
-
Cis-Atracurium:
- Cardiovascular Stability: Cis-atracurium does not have cardiovascular effects and does not release histamine, making it a safer option in terms of hemodynamic stability.
Cricothyroidotomy
Cricothyroidotomy is a surgical procedure that involves making an incision through the skin over the cricothyroid membrane, which is located between the thyroid and cricoid cartilages in the neck. This procedure is performed to establish an emergency airway in situations where intubation is not possible or has failed, such as in cases of severe airway obstruction, facial trauma, or anaphylaxis.
Indications
Cricothyroidotomy is indicated in the following situations:
- Acute Airway Obstruction: When there is a complete blockage of the upper airway due to swelling, foreign body, or trauma.
- Failed Intubation: When attempts to secure an airway via endotracheal intubation have been unsuccessful.
- Facial or Neck Trauma: In cases where traditional airway management is compromised due to injury.
- Severe Anaphylaxis: When rapid airway access is needed and other methods are not feasible.
Anatomy
- Cricothyroid Membrane: The membrane lies between the thyroid and cricoid cartilages and is a key landmark for the procedure.
- Surrounding Structures: Important structures in the vicinity include the carotid arteries, jugular veins, and the recurrent laryngeal nerve, which must be avoided during the procedure.
Procedure
Preparation
- Positioning: The patient should be in a supine position with the neck extended to improve access to the cricothyroid membrane.
- Sterilization: The area should be cleaned and sterilized to reduce the risk of infection.
- Anesthesia: Local anesthesia may be administered, but in emergency situations, this step may be skipped.
Steps
- Identify the Cricothyroid Membrane: Palpate the thyroid and cricoid cartilages to locate the membrane, which is typically located about 1-2 cm below the thyroid notch.
- Make the Incision: Using a scalpel, make a vertical incision through the skin over the cricothyroid membrane, approximately 2-3 cm in length.
- Incise the Membrane: Carefully incise the cricothyroid membrane horizontally to create an opening into the airway.
- Insert the Airway Device:
- A tracheostomy tube or a large-bore cannula (e.g., a 14-gauge catheter) is inserted into the opening to establish an airway.
- Ensure that the device is positioned correctly to allow for ventilation.
- Secure the Airway: If using a tracheostomy tube, secure it in place to prevent dislodgment.
Post-Procedure Care
- Ventilation: Connect the airway device to a bag-valve-mask (BVM) or ventilator to provide oxygenation and ventilation.
- Monitoring: Continuously monitor the patient for signs of respiratory distress, oxygen saturation, and overall stability.
- Consider Further Intervention: Plan for definitive airway management, such as a formal tracheostomy or endotracheal intubation, once the immediate crisis is resolved.
Complications
While cricothyroidotomy is a life-saving procedure, it can be associated with several complications, including:
- Infection: Risk of infection at the incision site.
- Hemorrhage: Potential bleeding from surrounding vessels.
- Damage to Surrounding Structures: Injury to the recurrent laryngeal nerve, carotid arteries, or jugular veins.
- Subcutaneous Emphysema: Air escaping into the subcutaneous tissue.
- Tracheal Injury: If the incision is not made correctly, there is a risk of damaging the trachea.
Tracheostomy
Tracheostomy is a surgical procedure that involves creating an opening in the trachea (windpipe) to facilitate breathing. This procedure is typically performed when there is a need for prolonged airway access, especially in cases where the upper airway is obstructed or compromised. The incision is usually made between the 2nd and 4th tracheal rings, as entry through the 1st ring can lead to complications such as tracheal stenosis.
Indications
Tracheostomy may be indicated in various clinical scenarios, including:
- Acute Upper Airway Obstruction: Conditions such as severe allergic reactions, infections (e.g., epiglottitis), or trauma that obstruct the airway.
- Major Surgery: Procedures involving the mouth, pharynx, or larynx that may compromise the airway.
- Prolonged Mechanical Ventilation: Patients requiring artificial ventilation for an extended period, such as those with respiratory failure.
- Unconscious Patients: Situations involving head injuries, tetanus, or bulbar poliomyelitis where airway protection is necessary.
Procedure
Technique
- Incision: A horizontal incision is made in the skin over the trachea, typically between the 2nd and 4th tracheal rings.
- Dissection: The subcutaneous tissue and muscles are dissected to expose the trachea.
- Tracheal Entry: An incision is made in the trachea, and a tracheostomy tube is inserted to maintain the airway.
Complications of Tracheostomy
Tracheostomy can be associated with several complications, which can be categorized into intraoperative, early postoperative, and late postoperative complications.
1. Intraoperative Complications
- Hemorrhage: Bleeding can occur during the procedure, particularly if major blood vessels are inadvertently injured.
- Injury to Paratracheal Structures:
- Carotid Artery: Injury can lead to significant hemorrhage and potential airway compromise.
- Recurrent Laryngeal Nerve: Damage can result in vocal cord paralysis and hoarseness.
- Esophagus: Injury can lead to tracheoesophageal fistula formation.
- Trachea: Improper technique can cause tracheal injury.
2. Early Postoperative Complications
- Apnea: Temporary cessation of breathing may occur, especially in patients with pre-existing respiratory issues.
- Hemorrhage: Postoperative bleeding can occur, requiring surgical intervention.
- Subcutaneous Emphysema: Air can escape into the subcutaneous tissue, leading to swelling and discomfort.
- Pneumomediastinum and Pneumothorax: Air can enter the mediastinum or pleural space, leading to respiratory distress.
- Infection: Risk of infection at the incision site or within the tracheostomy tube.
3. Late Postoperative Complications
- Difficult Decannulation: Challenges in removing the tracheostomy tube due to airway swelling or other factors.
- Tracheocutaneous Fistula: An abnormal connection between the trachea and the skin, which may require surgical repair.
- Tracheoesophageal Fistula: An abnormal connection between the trachea and esophagus, leading to aspiration and feeding difficulties.
- Tracheoinnominate Arterial Fistula: A rare but life-threatening complication where the trachea erodes into the innominate artery, resulting in severe hemorrhage.
- Tracheal Stenosis: Narrowing of the trachea due to scar tissue formation, which can lead to breathing difficulties.
Advanced Trauma Life Support (ATLS)
Introduction
Trauma is a leading cause of death, particularly in the first four decades of life, and ranks as the third most common cause of death overall. The Advanced Trauma Life Support (ATLS) program was developed to provide a systematic approach to the management of trauma patients, ensuring that life-threatening conditions are identified and treated promptly.
Mechanisms of Injury
In trauma, injuries can be classified based on their mechanisms:
Overt Mechanisms
- Penetrating Trauma: Injuries caused by objects that penetrate the skin and underlying tissues.
- Blunt Trauma: Injuries resulting from impact without penetration, such as collisions or falls.
- Thermal Trauma: Injuries caused by heat, including burns.
- Blast Injury: Injuries resulting from explosions, which can cause a combination of blunt and penetrating injuries.
Covert Mechanisms
- Blunt Trauma: Often results in internal injuries that may not be immediately apparent.
- Penetrating Trauma: Can include knife wounds and other sharp objects.
- Penetrating Knife: Specific injuries from stabbing.
- Gunshot Injury: Injuries caused by firearms, which can have extensive internal damage.
The track of penetrating injuries can often be identified by the anatomy involved, helping to determine which organs may be injured.
Steps in ATLS
The ATLS protocol consists of a systematic approach to trauma management, divided into two main surveys:
1. Primary Survey
- Objective: Identify and treat life-threatening conditions.
- Components:
- A - Airway: Ensure the airway is patent. In patients with a Glasgow Coma Scale (GCS) of 8 or less, immediate intubation is necessary. Maintain cervical spine stability.
- B - Breathing: Assess ventilation and oxygenation. Administer high-flow oxygen via a reservoir mask. Identify and treat conditions such as tension pneumothorax, flail chest, massive hemothorax, and open pneumothorax.
- C - Circulation: Evaluate circulation based on:
- Conscious level (indicates cerebral perfusion)
- Skin color
- Rapid, thready pulse (more reliable than blood pressure)
- D - Disability: Assess neurological status using the Glasgow Coma Scale (GCS).
- E - Exposure: Fully expose the patient to assess for injuries on the front and back.
2. Secondary Survey
- Objective: Conduct a thorough head-to-toe examination to identify all injuries.
- Components:
- AMPLE: A mnemonic to gather important patient
history:
- A - Allergy: Any known allergies.
- M - Medications: Current medications the patient is taking.
- P - Past Medical History: Relevant medical history.
- L - Last Meal: When the patient last ate.
- E - Events of Incident: Details about the mechanism of injury.
- AMPLE: A mnemonic to gather important patient
history:
Triage
Triage is the process of sorting patients based on the severity of their condition. The term "triage" comes from the French word meaning "to sort." In trauma settings, patients are categorized using a color-coded system:
- Red: First priority (critical patients, e.g., tension pneumothorax).
- Yellow: Second priority (urgent cases, e.g., pelvic fracture).
- Green: Third priority (minor injuries, e.g., simple fracture).
- Black: Zero priority (patients who are dead or unsalvageable).
Blunt Trauma
- Common Causes: The most frequent cause of blunt trauma is road traffic accidents.
- Seat Belt Use: Wearing seat belts significantly reduces
mortality rates:
- Front row occupants: 45% reduction in death rate.
- Rear seat belt use: 80% reduction in death rate for front seat occupants.
- Seat Belt Injuries: Marks on the thorax indicate a fourfold increase in thoracic injuries, while abdominal marks indicate a threefold increase in abdominal injuries.
Radiographs in Trauma
Key radiographic views to obtain in trauma cases include:
- Lateral cervical spine
- Anteroposterior chest
- Anteroposterior pelvis
Ludwig's Angina
Ludwig's angina is a serious, potentially life-threatening cellulitis or connective tissue infection of the submandibular space. It typically arises from infections of the teeth, particularly the second or third molars, and can lead to airway obstruction due to swelling. This condition is named after the German physician Wilhelm Friedrich von Ludwig, who first described it in the 19th century.
Etiology
-
Common Causes:
- Dental infections (especially from the lower molars)
- Infections from the floor of the mouth
- Trauma to the submandibular area
- Occasionally, infections can arise from other sources, such as the oropharynx or skin.
-
Microbial Agents:
- Mixed flora, including both aerobic and anaerobic bacteria.
- Common organisms include Streptococcus, Staphylococcus, and Bacteroides species.
Pathophysiology
- The infection typically begins in the submandibular space and can spread rapidly due to the loose connective tissue in this area.
- The swelling can lead to displacement of the tongue and can obstruct the airway, making it a medical emergency.
Clinical Presentation
-
Symptoms:
- Swelling of the submandibular area, which may be bilateral
- "Brawny induration" (firm, non-fluctuant swelling)
- Pain and tenderness in the submandibular region
- Difficulty swallowing (dysphagia) and speaking (dysarthria)
- Fever and malaise
- Possible elevation of the floor of the mouth and displacement of the tongue
-
Signs:
- Swelling may extend to the neck and may cause "bull neck" appearance.
- Trismus (limited mouth opening) may be present.
- Respiratory distress due to airway compromise.
Diagnosis
- Clinical Evaluation: Diagnosis is primarily clinical based on history and physical examination.
- Imaging:
- CT scan of the neck may be used to assess the extent of the infection and to rule out other conditions.
- X-rays may show air in the soft tissues if there is a necrotizing infection.
Management
Initial Management
- Airway Management:
- Ensure the airway is patent; this may require intubation or tracheostomy in severe cases.
Medical Treatment
- Antibiotics:
- Broad-spectrum intravenous antibiotics are initiated to cover both
aerobic and anaerobic bacteria. Common regimens may include:
- Ampicillin-sulbactam
- Clindamycin
- Metronidazole combined with a penicillin derivative
- Broad-spectrum intravenous antibiotics are initiated to cover both
aerobic and anaerobic bacteria. Common regimens may include:
Surgical Intervention
- Drainage:
- Surgical drainage may be necessary if there is an abscess formation or significant swelling.
- Incisions are typically made in the submandibular area to allow for drainage of pus and to relieve pressure.
Complications
- Airway Obstruction: The most critical complication, requiring immediate intervention.
- Sepsis: Can occur if the infection spreads systemically.
- Necrotizing fasciitis: Rare but serious complication that may require extensive surgical intervention.
- Thrombosis of the internal jugular vein: Can occur due to the spread of infection.
Prognosis
- With prompt diagnosis and treatment, the prognosis is generally good. However, delays in management can lead to significant morbidity and mortality due to airway compromise and systemic infection.