NEET MDS Lessons
General Surgery
Types of Head Injury
1. Extradural Hematoma (EDH)
Overview
- Demographics: Most common in young male patients.
- Association: Always associated with skull fractures.
- Injured Vessel: Middle meningeal artery.
- Common Site of Injury: Temporal bone at the pterion (the thinnest part of the skull), which overlies the middle meningeal artery.
- Location of Hematoma: Between the bone and the dura mater.
Other Common Sites
- Frontal fossa
- Posterior fossa
- May occur following disruption of major dural venous sinus.
Classical Presentation
- Initial Injury: Followed by a lucid interval where the patient may only complain of a headache.
- Deterioration: After minutes to hours, rapid
deterioration occurs, leading to:
- Contralateral hemiparesis
- Reduced consciousness level
- Ipsilateral pupillary dilatation (due to herniation)
Imaging
- CT Scan: Shows a lentiform (lens-shaped or biconvex) hyperdense lesion between the brain and skull.
Treatment
- Surgical Intervention: Immediate surgical evacuation via craniotomy.
- Mortality Rate: Overall mortality is 18% for all cases of EDH, but only 2% for isolated EDH.
2. Acute Subdural Hematoma (ASDH)
Overview
- Location: Accumulates in the space between the dura and arachnoid.
- Injury Mechanism: Associated with cortical vessel disruption and brain laceration.
- Primary Brain Injury: Often associated with primary brain injury.
Presentation
- Consciousness: Impaired consciousness from the time of impact.
Imaging
- CT Scan: Appears hyperdense, with hematoma spreading diffusely and having a concavo-convex appearance.
Treatment
- Surgical Intervention: Evacuation via craniotomy.
- Mortality Rate: Approximately 40%.
3. Chronic Subdural Hematoma (CSDH)
Overview
- Demographics: Most common in patients on anticoagulants and antiplatelet agents.
- History: Often follows a minor head injury weeks to months prior.
- Pathology: Due to the tear of bridging veins leading to ASDH, which is clinically silent. As the hematoma breaks down, it increases in volume, causing mass effect on the underlying brain.
Clinical Features
- Symptoms may include:
- Headache
- Cognitive decline
- Focal neurological deficits (FND)
- Seizures
- Important to exclude endocrine, hypoxic, and metabolic causes in this group.
Imaging
- CT Scan Appearance:
- Acute blood (0�10 days): Hyperdense
- Subacute blood (10 days to 2 weeks): Isodense
- Chronic (> 2 weeks): Hypodense
Treatment
- Surgical Intervention: Bur hole evacuation rather than craniotomy.
- Anesthesia: Elderly patients can often undergo surgery under local anesthesia, despite comorbidities.
4. Subarachnoid Hemorrhage (SAH)
Overview
- Causes: Most commonly due to aneurysms for spontaneous SAH, but trauma is the most common cause overall.
- Management: Conservative treatment is often employed for trauma cases.
5. Cerebral Contusions
Overview
- Definition: Bruising of the brain tissue due to trauma.
- Mechanism: Often occurs at the site of impact (coup) and the opposite side (contrecoup).
- Symptoms: Can range from mild confusion to severe neurological deficits depending on the extent of the injury.
Imaging
- CT Scan: May show areas of low attenuation (hypodense) or high attenuation (hyperdense) depending on the age of the contusion.
Treatment
- Management: Depends on the severity and associated injuries; may require surgical intervention if there is significant mass effect.
Types of Brain Injury
Brain injuries can be classified into two main categories: primary and secondary injuries. Understanding these types is crucial for effective diagnosis and management.
1. Primary Brain Injury
- Definition: Primary brain injury occurs at the moment of impact. It results from the initial mechanical forces applied to the brain and can lead to immediate damage.
- Examples:
- Contusions: Bruising of brain tissue.
- Lacerations: Tears in brain tissue.
- Concussions: A temporary loss of function due to trauma.
- Diffuse axonal injury: Widespread damage to the brain's white matter.
2. Secondary Brain Injury
- Definition: Secondary brain injury occurs after the initial impact and is often preventable. It results from a cascade of physiological processes that can exacerbate the initial injury.
- Principal Causes:
- Hypoxia: Reduced oxygen supply to the brain, which can worsen brain injury.
- Hypotension: Low blood pressure can lead to inadequate cerebral perfusion.
- Raised Intracranial Pressure (ICP): Increased pressure within the skull can compress brain tissue and reduce blood flow.
- Reduced Cerebral Perfusion Pressure (CPP): Insufficient blood flow to the brain can lead to ischemia.
- Pyrexia: Elevated body temperature can increase metabolic demands and worsen brain injury.
Glasgow Coma Scale (GCS)
The Glasgow Coma Scale is a clinical tool used to assess a patient's level of consciousness and neurological function. It consists of three components: eye opening, verbal response, and motor response.
Eye Opening (E)
- Spontaneous: 4
- To verbal command: 3
- To pain stimuli: 2
- No eye opening: 1
Verbal Response (V)
- Normal, oriented: 5
- Confused: 4
- Inappropriate words: 3
- Sounds only: 2
- No sounds: 1
Motor Response (M)
- Obeys commands: 6
- Localizes to pain: 5
- Withdrawal flexion: 4
- Abnormal flexion (decorticate): 3
- Extension (decerebrate): 2
- No motor response: 1
Scoring
- Best Possible Score: 15/15 (fully alert and oriented)
- Worst Possible Score: 3/15 (deep coma or death)
- Intubated Cases: For patients who are intubated, the verbal score is recorded as "T."
- Intubation Indication: Intubation should be performed if the GCS score is less than or equal to 8.
Additional Assessments
Pupil Examination
- Pupil Reflex: Assess size and light response.
- Uncal Herniation: In cases of mass effect on the ipsilateral side, partial third nerve dysfunction may be noted, characterized by a larger pupil with sluggish reflex.
- Hutchinson Pupil: As third nerve compromise increases, the ipsilateral pupil may become fixed and dilated.
Signs of Base of Skull Fracture
- Raccoon Eyes: Bilateral periorbital hematoma, indicating possible skull base fracture.
- Battle�s Sign: Bruising over the mastoid process, suggesting a fracture of the temporal bone.
- CSF Rhinorrhea or Otorrhea: Leakage of cerebrospinal fluid from the nose or ear, indicating a breach in the skull base.
- Hemotympanum: Blood in the tympanic cavity, often seen with ear bleeding.
Tracheostomy
Tracheostomy is a surgical procedure that involves creating an opening in the trachea (windpipe) to facilitate breathing. This procedure is typically performed when there is a need for prolonged airway access, especially in cases where the upper airway is obstructed or compromised. The incision is usually made between the 2nd and 4th tracheal rings, as entry through the 1st ring can lead to complications such as tracheal stenosis.
Indications
Tracheostomy may be indicated in various clinical scenarios, including:
- Acute Upper Airway Obstruction: Conditions such as severe allergic reactions, infections (e.g., epiglottitis), or trauma that obstruct the airway.
- Major Surgery: Procedures involving the mouth, pharynx, or larynx that may compromise the airway.
- Prolonged Mechanical Ventilation: Patients requiring artificial ventilation for an extended period, such as those with respiratory failure.
- Unconscious Patients: Situations involving head injuries, tetanus, or bulbar poliomyelitis where airway protection is necessary.
Procedure
Technique
- Incision: A horizontal incision is made in the skin over the trachea, typically between the 2nd and 4th tracheal rings.
- Dissection: The subcutaneous tissue and muscles are dissected to expose the trachea.
- Tracheal Entry: An incision is made in the trachea, and a tracheostomy tube is inserted to maintain the airway.
Complications of Tracheostomy
Tracheostomy can be associated with several complications, which can be categorized into intraoperative, early postoperative, and late postoperative complications.
1. Intraoperative Complications
- Hemorrhage: Bleeding can occur during the procedure, particularly if major blood vessels are inadvertently injured.
- Injury to Paratracheal Structures:
- Carotid Artery: Injury can lead to significant hemorrhage and potential airway compromise.
- Recurrent Laryngeal Nerve: Damage can result in vocal cord paralysis and hoarseness.
- Esophagus: Injury can lead to tracheoesophageal fistula formation.
- Trachea: Improper technique can cause tracheal injury.
2. Early Postoperative Complications
- Apnea: Temporary cessation of breathing may occur, especially in patients with pre-existing respiratory issues.
- Hemorrhage: Postoperative bleeding can occur, requiring surgical intervention.
- Subcutaneous Emphysema: Air can escape into the subcutaneous tissue, leading to swelling and discomfort.
- Pneumomediastinum and Pneumothorax: Air can enter the mediastinum or pleural space, leading to respiratory distress.
- Infection: Risk of infection at the incision site or within the tracheostomy tube.
3. Late Postoperative Complications
- Difficult Decannulation: Challenges in removing the tracheostomy tube due to airway swelling or other factors.
- Tracheocutaneous Fistula: An abnormal connection between the trachea and the skin, which may require surgical repair.
- Tracheoesophageal Fistula: An abnormal connection between the trachea and esophagus, leading to aspiration and feeding difficulties.
- Tracheoinnominate Arterial Fistula: A rare but life-threatening complication where the trachea erodes into the innominate artery, resulting in severe hemorrhage.
- Tracheal Stenosis: Narrowing of the trachea due to scar tissue formation, which can lead to breathing difficulties.