Talk to us?

Public Health Dentistry - NEETMDS- courses
Public Health Dentistry

Classifications of epidemiologic research

1. Descriptive research —involves description, documentation, analysis, and interpretation of data to evaluate a current event or situation

a. incidence—number of new cases of a specific disease within a defined population over a period of time

b. Prevalence—number of persons in a population affected by a condition at any one time

c. Count—simplest sum of disease: number of cases of disease occurrence

d. Proportion—use of a count with the addition of a denominator to determine prevalence:

does not include a time dimension: useful to evaluate prevalence of caries in schoolchildren or tooth loss in adult populations

e. Rate— uses a standardized denominator and includes a time dimension. for example. the number of deaths of newborn infants within first year of life per 1000 births

2. Analytical research—determines the cause of disease or if a causal relationship exists between a factor and a disease

a. Prospective study—planning of the entire study is completed before data are collected and analyzed; population is followed through time to determine which members develop the disease; several hypotheses may be tested at on time

b. Cohort study—individuals are classified into groups according to whether or not they pos- sess a particular characteristic thought to be related to the condition of interest; observations occur over time to see who develops dis ease or condition

c. Retrospective study— decision to carry out an investigation using observations or data that have been collected in the past; data may be incomplete or in a manner not appropriate for study

d. Cross-sectional study— study of subgroups of individuals in a specific and limited time frame to identify either initially to describe current status or developmental changes in the overall group from the perspective of what is typical in each subgroup

e. Longitudinal study—investigation of the same group of individuals over an extended period of time to identify a change or devel opment in that group

3. Experimental research—used when the etiology of the disease is established and the researcher wishes to determine the effectiveness of altering some factor or factors; deliberate applying or withholding of the supposed cause of a condition and observing the result

 

Multiphase and multistage random sampling are advanced sampling techniques used in research, particularly in public health and social sciences, to efficiently gather data from large and complex populations. Both methods are designed to reduce costs and improve the feasibility of sampling while maintaining the representativeness of the sample. Here’s a detailed explanation of each method:

Multiphase Sampling

Description: Multiphase sampling involves conducting a series of sampling phases, where each phase is used to refine the sample further. This method is particularly useful when the population is large and heterogeneous, and researchers want to focus on specific subgroups or characteristics.

Process:

  1. Initial Sampling: In the first phase, a large sample is drawn from the entire population using a probability sampling method (e.g., simple random sampling or stratified sampling).
  2. Subsequent Sampling: In the second phase, researchers may apply additional criteria to select a smaller, more specific sample from the initial sample. This could involve stratifying the sample based on certain characteristics (e.g., age, health status) or conducting follow-up surveys.
  3. Data Collection: Data is collected from the final sample, which is more targeted and relevant to the research question.

Applications:

  • Public Health Surveys: In a study assessing health behaviors, researchers might first sample a broad population and then focus on specific subgroups (e.g., smokers, individuals with chronic diseases) for more detailed analysis.
  • Qualitative Research: Multiphase sampling can be used to identify participants for in-depth interviews after an initial survey has highlighted specific areas of interest.

Multistage Sampling

Description: Multistage sampling is a complex form of sampling that involves selecting samples in multiple stages, often using a combination of probability sampling methods. This technique is particularly useful for large populations spread over wide geographic areas.

Process:

  1. First Stage: The population is divided into clusters (e.g., geographic areas, schools, or communities). A random sample of these clusters is selected.
  2. Second Stage: Within each selected cluster, a further sampling method is applied to select individuals or smaller units. This could involve simple random sampling, stratified sampling, or systematic sampling.
  3. Additional Stages: More stages can be added if necessary, depending on the complexity of the population and the research objectives.

Applications:

  • National Health Surveys: In a national health survey, researchers might first randomly select states (clusters) and then randomly select households within those states to gather health data.
  • Community Health Assessments: Multistage sampling can be used to assess oral health in a large city by first selecting neighborhoods and then sampling residents within those neighborhoods.

Key Differences

  • Structure:

    • Multiphase Sampling involves multiple phases of sampling that refine the sample based on specific criteria, often leading to a more focused subgroup.
    • Multistage Sampling involves multiple stages of sampling, often starting with clusters and then selecting individuals within those clusters.
  • Purpose:

    • Multiphase Sampling is typically used to narrow down a broad sample to a more specific group for detailed study.
    • Multistage Sampling is used to manage large populations and geographic diversity, making it easier to collect data from a representative sample.

EPIDEMIOLOGY

Epidemiology is the study of the Distribution and determinants of disease frequency in Humans.

Epidemiology— study of health and disease in human populations and how these states are influenced by the environment and ways of living; concerned with factors and conditions that determine the occurrence and distribution of health. disease, defects. disability and deaths among individuals

Epidemiology, in conjunction with the statistical and research methods used, focuses on comparison between groups or defined populations

Characteristics of epidemiology:

1. Groups rather than individuals are studied

2. Disease is multifactorial; host-agent-environment relationship becomes critical

3. A disease state depends on exposure to a specific agent, strength of the agent.  susceptibility of the host, and environmental conditions

4. Factors

  • Host: age, race, ethnic background, physiologic state, gender, culture
  • Agent: chemical, microbial, physical or mechanical irritants, parasitic, viral or bacterial
  • Environment: climate or physical environment, food sources, socioeconomic conditions

5. Interaction among factors affects disease or health status

 

 

Uses of epidemiology

I. Study of patterns among groups

2. Collecting data to describe normal biologic processes

3. Understanding the natural history of disease

4. Testing hypotheses for prevention and control of disease through special studies in populations

5. Planning and evaluating health care services

6. Studying of non disease entities such as suicide or accidents

7. Measuring the distribution of diseases in populations

8. Identifying risk factors and determinants of disease

Terms

Health—state of complete physical, mental, and social well-being where basic human needs are met. not merely the absence of disease or infirmity; free from disease or pain

Public health — science and art of preventing disease. prolonging life, and promoting physical and mental health and efficiency through organized community efforts

1. Public health is concerned with the aggregate health of a group, a community, a state, a nation. or a group of nations

2. Public health is people’s health

3. Concerned with four broad areas

a. Lifestyle and behavior

b. The environment

c. Human biology

d. The organization of health programs and systems

Dental public health—science and art of preventing and controlling dental diseases and promoting dental health through organized community efforts; that form of dental practice that serves the community as a patient rather than the individual; concerned with the dental education of the public, with applied dental research, and with the administration of group dental care programs. as well as the prevention and control of dental diseases on a community basis

Community health—same as public health full range of health services, environmental and personal, including major activities such as health education of the public and the social context of life as it affects the community; efforts that are organized to promote and restore the health and quality of life of the people

Community dental health services are directed to ward developing, reinforcing, and enhancing the oral health status of people either as individuals or collectively as groups and communities

When testing a null hypothesis, two types of errors can occur:

  1. Type I Error (False Positive):

    • Definition: This error occurs when the null hypothesis is rejected when it is actually true. In other words, the researcher concludes that there is an effect or difference when none exists.
    • Consequences in Dentistry: For example, a study might conclude that a new dental treatment is effective when it is not, leading to the adoption of an ineffective treatment.
  2. Type II Error (False Negative):

    • Definition: This error occurs when the null hypothesis is not rejected when it is actually false. In this case, the researcher fails to detect an effect or difference that is present.
    • Consequences in Dentistry: For instance, a study might conclude that a new dental material is not superior to an existing one when, in reality, it is more effective, potentially preventing the adoption of a beneficial treatment.

Importance of Behavior Management in Geriatric Patients with Cognitive Impairment:

1. Safety and Comfort: Cognitive impairments such as dementia or Alzheimer's disease can lead to fear, confusion, and aggression, which may increase the risk of injury to the patient or the dental team. Proper behavior management techniques ensure a calm and cooperative environment, minimizing the risk of harm.

2. Effective Communication: Patients with cognitive impairments often have difficulty understanding and following instructions, which can lead to poor treatment outcomes if not managed effectively. Careful and empathetic communication is essential for successful treatment.

3. Patient Cooperation: Engaging and reassuring patients can enhance their willingness to participate in the dental care process, which is critical for accurate diagnosis and treatment planning.

4. Maintenance of Dignity and Autonomy: Patients with cognitive impairments are particularly vulnerable to losing their sense of self-worth. Sensitive behavior management strategies can help maintain their dignity and allow them to make informed decisions as much as possible.

Challenges in Treating Geriatric Patients with Cognitive Impairment:

- Memory Loss: Patients may forget why they are at the dental office, what procedures were done, or instructions given, necessitating repetition and patience.
- Language and Comprehension Difficulties: They may struggle to understand questions or instructions, making communication challenging.
- Behavioral and Psychological Symptoms of Dementia (BPSD): These include agitation, aggression, depression, and anxiety, which can complicate the delivery of care.
- Physical Limitations: Cognitive impairments often coexist with physical disabilities, which may necessitate specialized approaches for positioning, providing care, and ensuring patient comfort.
- Medication Side Effects: Drugs used to manage cognitive symptoms can cause xerostomia, increased risk of caries, and other oral health issues that require careful consideration during treatment.

Strategies for Behavior Management:

1. Pre-Appointment Preparation: Involve caregivers in the appointment planning process, obtaining medical histories, and preparing patients for what to expect during the visit.
2. Environmental Modification: Create a calm, familiar, and non-threatening environment with minimal sensory stimulation, such as using soothing music, lighting, and comfortable seating.
3. Simplified Communication: Use clear, simple language, speak slowly and loudly if necessary, and avoid medical jargon.
4. Non-verbal Communication: Employ non-verbal cues, gestures, and visual aids to support understanding.
5. Building Rapport: Establish trust by introducing oneself, maintaining eye contact, and using a gentle touch.
6. Recognizing and Addressing Pain: Patients with cognitive impairments may not be able to communicate pain effectively. Regular assessment and use of pain management techniques are critical.
7. Pharmacological Interventions: In some cases, short-term or as-needed medications may be necessary to manage anxiety or agitation, but should be used judiciously due to potential side effects.
8. Behavioral Interventions: Employ techniques such as distraction, relaxation, and desensitization to reduce anxiety.
9. Task Simplification: Break down complex procedures into smaller, more manageable steps.
10. Use of Caregivers: Caregivers can provide comfort, support, and assistance during appointments, and can help reinforce instructions post-treatment.
11. Consistency and Routine: Maintain a consistent approach and routine during appointments to reduce confusion.
12. Cognitive Stimulation: Engage patients with familiar objects or topics to help orient them during the visit.
13. Therapeutic Touch: Use therapeutic touch, such as hand-over-mouth or hand-over-hand techniques, to guide patients through procedures and build trust.
14. Positive Reinforcement: Reward cooperative behavior with verbal praise, physical comfort, or small treats if appropriate.
15. Recognizing Triggers: Identify and avoid situations that may lead to agitation or distress, such as certain sounds or procedures.
16. Education and Training: Ensure that the dental team is well-informed about cognitive impairments and best practices for behavior management.

Here are some common types of bias encountered in public health dentistry, along with their implications:

1. Selection Bias

Description: This occurs when the individuals included in a study are not representative of the larger population. This can happen due to non-random sampling methods or when certain groups are more likely to be included than others.

Implications:

  • If a study on dental care access only includes patients from a specific clinic, the results may not be generalizable to the broader community.
  • Selection bias can lead to over- or underestimation of the prevalence of dental diseases or the effectiveness of interventions.

2. Information Bias

Description: This type of bias arises from inaccuracies in the data collected, whether through measurement errors, misclassification, or recall bias.

Implications:

  • Recall Bias: Patients may not accurately remember their dental history or behaviors, leading to incorrect data. For example, individuals may underestimate their sugar intake when reporting dietary habits.
  • Misclassification: If dental conditions are misdiagnosed or misreported, it can skew the results of a study assessing the effectiveness of a treatment.

3. Observer Bias

Description: This occurs when the researcher’s expectations or knowledge influence the data collection or interpretation process.

Implications:

  • If a dentist conducting a study on a new treatment is aware of which patients received the treatment versus a placebo, their assessment of outcomes may be biased.
  • Observer bias can lead to inflated estimates of treatment effectiveness or misinterpretation of results.

4. Confounding Bias

Description: Confounding occurs when an outside variable is associated with both the exposure and the outcome, leading to a false association between them.

Implications:

  • For example, if a study finds that individuals with poor oral hygiene have higher rates of cardiovascular disease, it may be confounded by lifestyle factors such as smoking or diet, which are related to both oral health and cardiovascular health.
  • Failing to control for confounding variables can lead to misleading conclusions about the relationship between dental practices and health outcomes.

5. Publication Bias

Description: This bias occurs when studies with positive or significant results are more likely to be published than those with negative or inconclusive results.

Implications:

  • If only studies showing the effectiveness of a new dental intervention are published, the overall understanding of its efficacy may be skewed.
  • Publication bias can lead to an overestimation of the benefits of certain treatments or interventions in the literature.

6. Survivorship Bias

Description: This bias occurs when only those who have "survived" a particular process are considered, ignoring those who did not.

Implications:

  • In dental research, if a study only includes patients who completed a treatment program, it may overlook those who dropped out due to adverse effects or lack of effectiveness, leading to an overly positive assessment of the treatment.

7. Attrition Bias

Description: This occurs when participants drop out of a study over time, and the reasons for their dropout are related to the treatment or outcome.

Implications:

  • If patients with poor outcomes are more likely to drop out of a study evaluating a dental intervention, the final results may show a more favorable outcome than is truly the case.

Addressing Bias in Public Health Dentistry

To minimize bias in public health dentistry research, several strategies can be employed:

  • Random Sampling: Use random sampling methods to ensure that the sample is representative of the population.
  • Blinding: Implement blinding techniques to reduce observer bias, where researchers and participants are unaware of group assignments.
  • Standardized Data Collection: Use standardized protocols for data collection to minimize information bias.
  • Statistical Control: Employ statistical methods to control for confounding variables in the analysis.
  • Transparency in Reporting: Encourage the publication of all research findings, regardless of the results, to combat publication bias.

Explore by Exams