NEET MDS Lessons
Public Health Dentistry
Factors Considered for Prescribing Fluoride Tablets
Child's Age:
- Different age groups require different dosages.
- Children older than 4 years may receive lozenges or chewable tablets, while those younger than 4 are typically prescribed liquid fluoride drops.
Fluoride Concentration in Drinking Water:
- The fluoride level in the child's drinking water is crucial.
- If the fluoride concentration is less than 1 part per million (ppm), systemic fluoride supplementation is recommended.
Risk of Dental Caries:
- Children at higher risk for dental decay may need additional fluoride supplementation.
- Regular dental assessments help determine the need for fluoride.
Overall Health and Dietary Needs:
- Consideration of the child's overall health and any dietary restrictions that may affect fluoride intake.
Recommended Doses of Fluoride Tablets
For Children Aged 6 Months to 4 Years:
- Liquid drops are typically prescribed in doses of 0.125, 0.25, and 0.5 mg of fluoride ion.
For Children Aged 4 Years and Older:
- Chewable tablets or lozenges are recommended, usually at doses of 0.5 mg to 1 mg of fluoride ion.
Adjustments Based on Water Fluoride Levels:
- Doses may be adjusted based on the fluoride content in the child's drinking water to ensure adequate protection against dental caries.
Duration of Supplementation:
- Fluoride supplementation is generally continued until the child reaches 16 years of age, depending on their fluoride exposure and dental health status.
Classifications of epidemiologic research
1. Descriptive research —involves description, documentation, analysis, and interpretation of data to evaluate a current event or situation
a. incidence—number of new cases of a specific disease within a defined population over a period of time
b. Prevalence—number of persons in a population affected by a condition at any one time
c. Count—simplest sum of disease: number of cases of disease occurrence
d. Proportion—use of a count with the addition of a denominator to determine prevalence:
does not include a time dimension: useful to evaluate prevalence of caries in schoolchildren or tooth loss in adult populations
e. Rate— uses a standardized denominator and includes a time dimension. for example. the number of deaths of newborn infants within first year of life per 1000 births
2. Analytical research—determines the cause of disease or if a causal relationship exists between a factor and a disease
a. Prospective study—planning of the entire study is completed before data are collected and analyzed; population is followed through time to determine which members develop the disease; several hypotheses may be tested at on time
b. Cohort study—individuals are classified into groups according to whether or not they pos- sess a particular characteristic thought to be related to the condition of interest; observations occur over time to see who develops dis ease or condition
c. Retrospective study— decision to carry out an investigation using observations or data that have been collected in the past; data may be incomplete or in a manner not appropriate for study
d. Cross-sectional study— study of subgroups of individuals in a specific and limited time frame to identify either initially to describe current status or developmental changes in the overall group from the perspective of what is typical in each subgroup
e. Longitudinal study—investigation of the same group of individuals over an extended period of time to identify a change or devel opment in that group
3. Experimental research—used when the etiology of the disease is established and the researcher wishes to determine the effectiveness of altering some factor or factors; deliberate applying or withholding of the supposed cause of a condition and observing the result
A test of significance in dentistry, as in other fields of research, is a
statistical method used to determine whether observed results are likely due to
chance or if they are statistically significant, meaning that they are reliable
and not random. It helps dentists and researchers make inferences about the
validity of their hypotheses.
The procedure for conducting a test of significance typically involves the
following steps:
1. Formulate a Null Hypothesis (H0) and an Alternative Hypothesis (H1):
The null hypothesis is a statement that assumes there is no significant
difference between groups or variables being studied, while the alternative
hypothesis suggests that there is a significant difference. For example, in a
dental study comparing two different toothpaste brands for their effectiveness
in reducing plaque, the null hypothesis might be that there is no difference in
plaque reduction between the two brands, while the alternative hypothesis would
be that one brand is more effective than the other.
2. Choose a significance level (α): This is the probability of
incorrectly rejecting the null hypothesis when it is true. Common significance
levels are 0.05 (5%) or 0.01 (1%).
3. Determine the sample size: Depending on the research
question, power analysis or literature review may help determine the appropriate
sample size needed to detect a clinically significant difference.
4. Collect data: Gather data from a sample of patients or
subjects under controlled conditions or from existing databases.
5. Calculate test statistics: This involves calculating a value
that represents the magnitude of the difference between the observed data and
what would be expected if the null hypothesis were true. Common test statistics
include the t-test, chi-square test, and ANOVA (Analysis of Variance).
6. Determine the p-value: The p-value is the probability of
obtaining the observed results or results more extreme than those observed if
the null hypothesis were true. It is calculated based on the test statistic and
the chosen significance level.
7. Compare the p-value to the significance level (α): If the
p-value is less than the significance level, the result is considered
statistically significant. If the p-value is greater than the significance
level, the result is not statistically significant, and the null hypothesis is
not rejected.
8. Interpret the results: Based on the p-value, make a decision
about the null hypothesis. If the p-value is less than the significance level,
reject the null hypothesis and accept the alternative hypothesis. If the p-value
is greater than the significance level, fail to reject the null hypothesis.
Here is a simplified example of a test of significance applied to dentistry:
Suppose you are comparing two different toothpaste brands to determine if there
is a significant difference in their effectiveness in reducing dental plaque.
You conduct a study with 50 participants who are randomly assigned to use either
brand A or brand B for a month. After a month, you measure the plaque levels of
all participants.
1. Null Hypothesis (H0): There is no significant difference in plaque reduction
between the two toothpaste brands.
2. Alternative Hypothesis (H1): There is a significant difference in plaque
reduction between the two toothpaste brands.
3. Significance Level (α): 0.05
Now, let's say you collected the data and found that the mean plaque reduction
for brand A was 25%, with a standard deviation of 5%, and for brand B, the mean
was 30%, with a standard deviation of 4%. You could use an independent samples
t-test to compare the two groups' means.
4. Calculate the t-statistic: t = (Mean of Brand B - Mean of Brand A) /
(Standard Error of the Difference)
5. Find the p-value associated with the calculated t-statistic. If the p-value
is less than 0.05, you reject the null hypothesis.
If the p-value is less than 0.05, you can conclude that there is a statistically
significant difference in plaque reduction between the two toothpaste brands,
supporting the alternative hypothesis that one brand is more effective than the
other. This could lead to further research or a change in dental hygiene
recommendations.
In dental applications, tests of significance are commonly used in studies
examining the effectiveness of different treatments, materials, and procedures.
For instance, they can be applied to compare the success rates of different
types of dental implants, the efficacy of various tooth whitening methods, or
the impact of oral hygiene interventions on periodontal health. Understanding
the statistical significance of these findings allows dentists to make
evidence-based decisions and recommendations for patient care.
Here are some common types of bias encountered in public health dentistry, along with their implications:
1. Selection Bias
Description: This occurs when the individuals included in a study are not representative of the larger population. This can happen due to non-random sampling methods or when certain groups are more likely to be included than others.
Implications:
- If a study on dental care access only includes patients from a specific clinic, the results may not be generalizable to the broader community.
- Selection bias can lead to over- or underestimation of the prevalence of dental diseases or the effectiveness of interventions.
2. Information Bias
Description: This type of bias arises from inaccuracies in the data collected, whether through measurement errors, misclassification, or recall bias.
Implications:
- Recall Bias: Patients may not accurately remember their dental history or behaviors, leading to incorrect data. For example, individuals may underestimate their sugar intake when reporting dietary habits.
- Misclassification: If dental conditions are misdiagnosed or misreported, it can skew the results of a study assessing the effectiveness of a treatment.
3. Observer Bias
Description: This occurs when the researcher’s expectations or knowledge influence the data collection or interpretation process.
Implications:
- If a dentist conducting a study on a new treatment is aware of which patients received the treatment versus a placebo, their assessment of outcomes may be biased.
- Observer bias can lead to inflated estimates of treatment effectiveness or misinterpretation of results.
4. Confounding Bias
Description: Confounding occurs when an outside variable is associated with both the exposure and the outcome, leading to a false association between them.
Implications:
- For example, if a study finds that individuals with poor oral hygiene have higher rates of cardiovascular disease, it may be confounded by lifestyle factors such as smoking or diet, which are related to both oral health and cardiovascular health.
- Failing to control for confounding variables can lead to misleading conclusions about the relationship between dental practices and health outcomes.
5. Publication Bias
Description: This bias occurs when studies with positive or significant results are more likely to be published than those with negative or inconclusive results.
Implications:
- If only studies showing the effectiveness of a new dental intervention are published, the overall understanding of its efficacy may be skewed.
- Publication bias can lead to an overestimation of the benefits of certain treatments or interventions in the literature.
6. Survivorship Bias
Description: This bias occurs when only those who have "survived" a particular process are considered, ignoring those who did not.
Implications:
- In dental research, if a study only includes patients who completed a treatment program, it may overlook those who dropped out due to adverse effects or lack of effectiveness, leading to an overly positive assessment of the treatment.
7. Attrition Bias
Description: This occurs when participants drop out of a study over time, and the reasons for their dropout are related to the treatment or outcome.
Implications:
- If patients with poor outcomes are more likely to drop out of a study evaluating a dental intervention, the final results may show a more favorable outcome than is truly the case.
Addressing Bias in Public Health Dentistry
To minimize bias in public health dentistry research, several strategies can be employed:
- Random Sampling: Use random sampling methods to ensure that the sample is representative of the population.
- Blinding: Implement blinding techniques to reduce observer bias, where researchers and participants are unaware of group assignments.
- Standardized Data Collection: Use standardized protocols for data collection to minimize information bias.
- Statistical Control: Employ statistical methods to control for confounding variables in the analysis.
- Transparency in Reporting: Encourage the publication of all research findings, regardless of the results, to combat publication bias.
Multiphase and multistage random sampling are advanced sampling techniques used in research, particularly in public health and social sciences, to efficiently gather data from large and complex populations. Both methods are designed to reduce costs and improve the feasibility of sampling while maintaining the representativeness of the sample. Here’s a detailed explanation of each method:
Multiphase Sampling
Description: Multiphase sampling involves conducting a series of sampling phases, where each phase is used to refine the sample further. This method is particularly useful when the population is large and heterogeneous, and researchers want to focus on specific subgroups or characteristics.
Process:
- Initial Sampling: In the first phase, a large sample is drawn from the entire population using a probability sampling method (e.g., simple random sampling or stratified sampling).
- Subsequent Sampling: In the second phase, researchers may apply additional criteria to select a smaller, more specific sample from the initial sample. This could involve stratifying the sample based on certain characteristics (e.g., age, health status) or conducting follow-up surveys.
- Data Collection: Data is collected from the final sample, which is more targeted and relevant to the research question.
Applications:
- Public Health Surveys: In a study assessing health behaviors, researchers might first sample a broad population and then focus on specific subgroups (e.g., smokers, individuals with chronic diseases) for more detailed analysis.
- Qualitative Research: Multiphase sampling can be used to identify participants for in-depth interviews after an initial survey has highlighted specific areas of interest.
Multistage Sampling
Description: Multistage sampling is a complex form of sampling that involves selecting samples in multiple stages, often using a combination of probability sampling methods. This technique is particularly useful for large populations spread over wide geographic areas.
Process:
- First Stage: The population is divided into clusters (e.g., geographic areas, schools, or communities). A random sample of these clusters is selected.
- Second Stage: Within each selected cluster, a further sampling method is applied to select individuals or smaller units. This could involve simple random sampling, stratified sampling, or systematic sampling.
- Additional Stages: More stages can be added if necessary, depending on the complexity of the population and the research objectives.
Applications:
- National Health Surveys: In a national health survey, researchers might first randomly select states (clusters) and then randomly select households within those states to gather health data.
- Community Health Assessments: Multistage sampling can be used to assess oral health in a large city by first selecting neighborhoods and then sampling residents within those neighborhoods.
Key Differences
-
Structure:
- Multiphase Sampling involves multiple phases of sampling that refine the sample based on specific criteria, often leading to a more focused subgroup.
- Multistage Sampling involves multiple stages of sampling, often starting with clusters and then selecting individuals within those clusters.
-
Purpose:
- Multiphase Sampling is typically used to narrow down a broad sample to a more specific group for detailed study.
- Multistage Sampling is used to manage large populations and geographic diversity, making it easier to collect data from a representative sample.
Berkson's Bias is a type of selection bias that occurs in case-control studies, particularly when the cases and controls are selected from a hospital or clinical setting. It arises when the selection of cases (individuals with the disease) and controls (individuals without the disease) is influenced by the presence of other conditions or factors, leading to a distortion in the association between exposure and outcome.
Key Features of Berkson's Bias
-
Hospital-Based Selection: Berkson's Bias typically occurs in studies where both cases and controls are drawn from the same hospital or clinical setting. This can lead to a situation where the controls are not representative of the general population.
-
Association with Other Conditions: Individuals who are hospitalized may have multiple health issues or risk factors that are not present in the general population. This can create a misleading association between the exposure being studied and the disease outcome.
-
Underestimation or Overestimation of Risk: Because the controls may have different health profiles compared to the general population, the odds ratio calculated in the study may be biased. This can lead to either an overestimation or underestimation of the true association between the exposure and the disease.
Example of Berkson's Bias
Consider a study investigating the relationship between smoking and lung cancer, where both cases (lung cancer patients) and controls (patients without lung cancer) are selected from a hospital. If the controls are patients with other diseases that are also related to smoking (e.g., chronic obstructive pulmonary disease), this could lead to Berkson's Bias. The controls may have a higher prevalence of smoking than the general population, which could distort the perceived association between smoking and lung cancer.
Implications of Berkson's Bias
- Misleading Conclusions: Berkson's Bias can lead researchers to draw incorrect conclusions about the relationship between exposures and outcomes, which can affect public health recommendations and clinical practices.
- Generalizability Issues: Findings from studies affected by Berkson's Bias may not be generalizable to the broader population, limiting the applicability of the results.
Mitigating Berkson's Bias
To reduce the risk of Berkson's Bias in research, researchers can:
-
Select Controls from the General Population: Instead of selecting controls from a hospital, researchers can use population-based controls to ensure a more representative sample.
-
Use Multiple Control Groups: Employing different control groups can help identify and account for potential biases.
-
Stratify Analyses: Stratifying analyses based on relevant characteristics (e.g., age, sex, comorbidities) can help to control for confounding factors.
-
Conduct Sensitivity Analyses: Performing sensitivity analyses can help assess how robust the findings are to different assumptions about the data.
Terms
Health—state of complete physical, mental, and social well-being where basic human needs are met. not merely the absence of disease or infirmity; free from disease or pain
Public health — science and art of preventing disease. prolonging life, and promoting physical and mental health and efficiency through organized community efforts
1. Public health is concerned with the aggregate health of a group, a community, a state, a nation. or a group of nations
2. Public health is people’s health
3. Concerned with four broad areas
a. Lifestyle and behavior
b. The environment
c. Human biology
d. The organization of health programs and systems
Dental public health—science and art of preventing and controlling dental diseases and promoting dental health through organized community efforts; that form of dental practice that serves the community as a patient rather than the individual; concerned with the dental education of the public, with applied dental research, and with the administration of group dental care programs. as well as the prevention and control of dental diseases on a community basis
Community health—same as public health full range of health services, environmental and personal, including major activities such as health education of the public and the social context of life as it affects the community; efforts that are organized to promote and restore the health and quality of life of the people
Community dental health services are directed to ward developing, reinforcing, and enhancing the oral health status of people either as individuals or collectively as groups and communities