NEET MDS Lessons
Prosthodontics
Porosity refers to the presence of voids or spaces within a solid material. In the context of prosthodontics, it specifically pertains to the presence of small cavities or air bubbles within a cast metal alloy. These defects can vary in size, distribution, and number, and are generally undesirable because they compromise the integrity and mechanical properties of the cast restoration.
Causes of Porosity Defects
Porosity in castings can arise from several factors, including:
1. Incomplete Burnout of the Investment Material: If the wax pattern used to create the mold is not completely removed by the investment material during the burnout process, gases can become trapped and leave pores as the metal cools and solidifies.
2. Trapped Air Bubbles: Air can become trapped in the investment mold during the mixing and pouring of the casting material. If not properly eliminated, these air bubbles can lead to porosity when the metal is cast.
3. Rapid Cooling: If the metal cools too quickly, the solidification process may not be complete, leaving small pockets of unsolidified metal that shrink and form pores as they solidify.
4. Contamination: The presence of contaminants in the metal alloy or investment material can also lead to porosity. These contaminants can react with the metal, forming gases that become trapped and create pores.
5. Insufficient Investment Compaction: If the investment material is not packed tightly around the wax pattern, small air spaces may remain, which can become pores when the metal is cast.
6. Gas Formation During Casting: Certain reactions between the metal alloy and the investment material or other substances in the casting environment can produce gases that become trapped in the metal.
7. Metal-Mold Interactions: Sometimes, the metal can react with the mold material, resulting in gas formation or the entrapment of mold material within the metal, which then appears as porosity.
8. Incorrect Spruing and Casting Design: Poorly designed sprues can lead to turbulent metal flow, causing air entrapment and subsequent porosity. Additionally, a complex casting design may result in areas where metal cannot flow properly, leading to incomplete filling of the mold and the formation of pores.
Consequences of Porosity Defects
The presence of porosity in a cast restoration can have several negative consequences:
1. Reduced Strength: The pores within the metal act as stress concentrators, weakening the material and making it more prone to fracture or breakage under functional loads.
2. Poor Fit: The pores can prevent the metal from fitting snugly against the prepared tooth, leading to a poor marginal fit and potential for recurrent decay or gum irritation.
3. Reduced Biocompatibility: The roughened surfaces and irregularities created by porosity can harbor plaque and bacteria, which can lead to peri-implant or periodontal disease.
4. Aesthetic Issues: In visible areas, porosity can be unsightly, affecting the overall appearance of the restoration.
5. Shortened Service Life: Prosthodontic restorations with porosity defects are more likely to fail prematurely, requiring earlier replacement.
6. Difficulty in Polishing and Finishing: The presence of porosity makes it challenging to achieve a smooth, polished finish, which can affect the comfort and longevity of the restoration.
Prevention and Management of Porosity
To minimize porosity defects in prosthodontic castings, the following steps can be taken:
1. Proper Investment Technique: Carefully follow the manufacturer's instructions for mixing and investing the wax pattern to ensure complete burnout and minimize trapped air bubbles.
2. Slow and Controlled Cooling: Allowing the metal to cool slowly and uniformly can help to reduce the formation of pores by allowing gases to escape more easily.
3. Pre-casting De-gassing: Some techniques involve degassing the investment mold before casting to remove any trapped gases.
4. Cleanliness: Ensure that the metal alloy and investment materials are free from contaminants.
5. Correct Casting Procedure: Use proper casting techniques to reduce turbulence and ensure a smooth flow of metal into the mold.
6. Appropriate Casting Design: Design the restoration with proper spruing and a simple, well-thought-out pattern to allow for even metal flow and minimize trapped air.
7. Proper Casting Conditions: Control the casting environment to reduce the likelihood of gas formation during the casting process.
8. Inspection and Quality Control: Carefully inspect the cast restoration for porosity under magnification and radiographs before it is delivered to the patient.
9. Repair or Replacement: When porosity defects are detected, they may be repairable through techniques such as metal condensation, spot welding, or adding metal with a pin connector. However, in some cases, the restoration may need to be recast to ensure optimal quality.
Understanding the anatomical considerations for upper (maxillary) and lower (mandibular) dentures is crucial for successful denture fabrication and fitting. Proper knowledge of stress-bearing areas, retentive areas, and relief areas helps in achieving optimal retention, stability, and comfort for the patient.
Maxilla
Stress Bearing Areas
-
Primary Stress Bearing Area:
- Residual Alveolar Ridge: The primary area where the forces of mastication are transmitted.
-
Secondary Stress Bearing Areas:
- Rugae: The folds in the anterior hard palate that provide additional support.
- Anterior Hard Palate: The bony part of the roof of the mouth.
- Maxillary Tuberosity: The rounded area at the back of the maxilla that aids in support.
-
Tertiary Stress Bearing Area and Secondary Retentive Area:
- Posteriolateral Part of Hard Palate: Provides additional support and retention.
Relieving Areas
- Incisive Papilla: A small elevation located behind the maxillary central incisors; important to relieve pressure.
- Mid Palatine Raphe: The midline ridge of the hard palate; should be relieved to avoid discomfort.
- Cuspid Eminence: The bony prominence associated with the canine teeth; requires relief.
- Fovea Palatine: Small depressions located posterior to the hard palate; should be considered for relief.
Primary Retentive Area
- Posterior Palatal Seal Area: The area at the posterior border of the maxillary denture that aids in retention by creating a seal.
Mandible
Stress Bearing Areas
-
Primary Stress Bearing Area:
- Buccal Shelf Area: The area between the residual ridge and the buccal vestibule; provides significant support.
-
Secondary Stress Bearing Area:
- Slopes of Edentulous Ridge: The inclined surfaces of the residual ridge that can bear some stress.
Retentive Areas
-
Primary Retentive and Primary Peripheral Seal Area:
- Retromolar Pad: The area behind the last molar that provides retention and support.
-
Secondary Peripheral Seal Area:
- Anterior Lingual Border: The area along the anterior border of the lingual vestibule that aids in retention.
Relief Areas
- Crest of Residual Ridge: The top of the ridge should be relieved to prevent pressure sores.
- Mental Foramen: The opening for the mental nerve; should be avoided to prevent discomfort.
- Mylohyoid Ridge: The bony ridge along the mandible that may require relief.
Posterior Palatal Seal (PPS)
The posterior palatal seal is critical for ensuring a complete seal, which enhances the retention of the maxillary denture.
Functions of the Posterior Palatal Seal
- Displacement of Soft Tissues: Slightly displaces the soft tissues at the distal end of the denture to ensure a complete seal.
- Prevention of Food Ingress: Prevents food and saliva from entering beneath the denture base.
- Control of Impression Material: Prevents excess impression material from running down the patient's throat.
Vibrating Lines
-
Vibrating Line: An imaginary line that passes from one pterygomaxillary notch to the other, located 2 mm in front of the fovea palatine, always on the soft palate. The distal end of the denture should be positioned 1-2 mm posterior to this line.
-
Anterior Vibrating Line:
- Located at the junction between the immovable tissues of the hard palate and the slightly movable tissues of the soft palate.
- Identified by asking the patient to say "ah" in short vigorous bursts or performing the Valsalva maneuver.
- The line has a cupid bow shape.
-
Posterior Vibrating Line:
- Located at the junction of the soft palate that shows limited movement and the soft palate that shows marked movement.
Concepts Proposed to Attain Balanced Occlusion
Balanced occlusion is a critical aspect of complete denture design, ensuring stability and function during mastication and speech. Various concepts have been proposed over the years to achieve balanced occlusion, each contributing unique insights into the arrangement of artificial teeth. Below are the key concepts:
I. Concepts for Achieving Balanced Occlusion
1. Gysi's Concept (1914)
- Overview: Gysi suggested that arranging 33° anatomic teeth could enhance the stability of dentures.
- Key Features:
- The use of anatomic teeth allows for better adaptation to various movements of the articulator.
- This arrangement aims to provide stability during functional movements.
2. French's Concept (1954)
- Overview: French proposed lowering the lower occlusal plane to increase the stability of dentures while achieving balanced occlusion.
- Key Features:
- Suggested inclinations for upper teeth:
- Upper first premolars: 5° inclination
- Upper second premolars: 10° inclination
- Upper molars: 15° inclination
- This arrangement aims to enhance the occlusal relationship and stability of the denture.
- Suggested inclinations for upper teeth:
3. Sear's Concept
- Overview: Sears proposed balanced occlusion for non-anatomical teeth.
- Key Features:
- Utilized posterior balancing ramps or an occlusal plane that curves anteroposteriorly and laterally.
- This design helps maintain occlusal balance during functional movements.
4. Pleasure's Concept
- Overview: Pleasure introduced the concept of the "Pleasure Curve" or the posterior reverse lateral curve.
- Key Features:
- This curve aids in achieving balanced occlusion by allowing for better distribution of occlusal forces.
- It enhances the functional relationship between the upper and lower dentures.
5. Frush's Concept
- Overview: Frush advised arranging teeth in a one-dimensional contact relationship.
- Key Features:
- This arrangement should be reshaped during the try-in phase to obtain balanced occlusion.
- Emphasizes the importance of adjusting the occlusal surfaces for optimal contact.
6. Hanau's Quint
- Overview: Rudolph L. Hanau proposed nine factors that govern the articulation of artificial teeth, known as the laws of balanced articulation.
- Nine Factors:
- Horizontal condylar inclination
- Protrusive incisal guidance
- Relative cusp height
- Compensating curve
- Plane of orientation
- Buccolingual inclination of tooth axis
- Sagittal condylar pathway
- Sagittal incisal guidance
- Tooth alignment
- Condensation: Hanau later condensed these nine factors into five key principles for practical application.
7. Trapozzano's Concept of Occlusion
- Overview: Trapozzano reviewed and simplified Hanau's quint and proposed his triad of occlusion.
- Key Features:
- Focuses on the essential elements of occlusion to streamline the process of achieving balanced occlusion.
II. Monoplane or Non-Balanced Occlusion
Monoplane occlusion is characterized by an arrangement of teeth that serves a specific purpose. It includes the following concepts:
- Spherical Theory: Proposes that the occlusal surfaces should be arranged in a spherical configuration to facilitate movement.
- Organic Occlusion: Focuses on the natural relationships and movements of the jaw.
- Occlusal Balancing Ramps for Protrusive Balance: Utilizes ramps to maintain balance during protrusive movements.
- Transographics: A method of analyzing occlusal relationships and movements.
Sears' Occlusal Pivot Theory
- Overview: Sears also proposed the occlusal pivot theory for monoplane or balanced occlusion, emphasizing the importance of a pivot point for functional movements.
III. Lingualized Occlusion
- Overview: Proposed by Gysi, lingualized occlusion involves positioning the maxillary posterior teeth to occlude with the mandibular posterior teeth, enhancing stability and function.
- Key Features:
- The maxillary teeth are positioned more centrally, while the mandibular teeth are positioned buccally.
- This arrangement allows for better functional balance and esthetics.
Kennedy's Classification is a system used in dentistry to categorize the
edentulous spaces (areas without teeth) in the mouth of a patient who is fully
or partially edentulous. This classification system helps in planning the
treatment, designing the dentures, and predicting the outcomes of denture
therapy. It was developed by Dr. Edward Kennedy in 1925 and is widely used by
dental professionals.
The classification is based on the relationship between the remaining teeth, the
residual alveolar ridge, and the movable tissues of the oral cavity. It is
particularly useful for patients who are wearing or will be wearing complete or
partial dentures.
There are four main classes of Kennedy's Classification:
1. Class I: In this class, the patient has a bilateral edentulous area with no
remaining teeth on either side of the arch. This means that the patient has a
full denture on the upper and lower jaws with no natural tooth support.
2. Class II: The patient has a unilateral edentulous area with natural teeth
remaining only on one side of the arch. This could be either the upper or lower
jaw. The edentulous side has a complete denture that is supported by the teeth
on the opposite side and the buccal (cheek) and lingual (tongue) tissues.
3. Class III: There is a unilateral edentulous area with natural teeth remaining
on both sides of the arch, but the edentulous area does not include the anterior
(front) teeth. This means the patient has a partial denture on one side of the
arch, with the rest of the teeth acting as support for the denture.
4. Class IV: The patient has a unilateral edentulous area with natural teeth
remaining only on the anterior region of the edentulous side. The posterior
(back) section of the same side is missing, and there may or may not be teeth on
the opposite side. This situation requires careful consideration for the design
of the partial denture to ensure stability and retention.
Each class is further divided into subcategories (A, B, and C) to account for
variations in the amount of remaining bone support and the presence or absence
of undercuts, which are areas where the bone curves inward and can affect the
stability of the denture.
- Class I (A, B, C): Variations in the amount of bone support and presence of
undercuts in the fully edentulous arches.
- Class II (A, B, C): Variations in the amount of bone support and presence of
undercuts in the edentulous area with natural teeth on the opposite side.
- Class III (A, B, C): Variations in the amount of bone support and presence of
undercuts in the edentulous area with natural teeth on the same side, but not in
the anterior region.
- Class IV (A, B, C): Variations in the amount of bone support and presence of
undercuts in the edentulous area with natural teeth remaining only in the
anterior region of the edentulous side.
Understanding a patient's Kennedy's Classification helps dentists and dental
technicians to create well-fitting and functional dentures, which are crucial
for the patient's comfort, speech, chewing ability, and overall oral health.
Complete Denture Occlusion
Complete denture occlusion is a critical aspect of prosthodontics, as it affects the function, stability, and comfort of the dentures. There are three primary types of occlusion used in complete dentures: Balanced Occlusion, Monoplane Occlusion, and Lingualized Occlusion. Each type has its own characteristics and applications.
Types of Complete Denture Occlusion
1. Balanced Occlusion
- Definition: Balanced occlusion is characterized by simultaneous contact of all opposing teeth in centric occlusion, providing stability and even distribution of occlusal forces.
- Key Features:
- Three-Point Contact: While a three-point contact (one anterior and two posterior) is a starting point, it is not sufficient for true balanced occlusion. Instead, there should be simultaneous contact of all teeth.
- Minimal Occlusal Balance: For minimal occlusal balance, there should be at least three points of contact on the occlusal plane. The more points of contact, the better the balance.
- Absence in Natural Dentition: Balanced occlusion is not typically found in natural dentition; it is a concept specifically applied to complete dentures to enhance stability during function.
- Importance: This type of occlusion is particularly important for patients with complete dentures, as it helps to minimize tipping and movement of the dentures during chewing and speaking.
2. Monoplane Occlusion
- Definition: Monoplane occlusion involves a flat occlusal plane where the occlusal surfaces of the teeth are arranged in a single plane.
- Key Features:
- Flat Occlusal Plane: The occlusal surfaces are designed to be flat, which simplifies the occlusion and reduces the complexity of the denture design.
- Limited Interference: This type of occlusion minimizes interferences during lateral and protrusive movements, making it easier for patients to adapt to their dentures.
- Applications: Monoplane occlusion is often used in cases where the residual ridge is severely resorbed or in patients with limited jaw movements.
3. Lingualized Occlusion
- Definition: Lingualized occlusion is characterized by the positioning of the maxillary posterior teeth in a way that they occlude with the mandibular posterior teeth, with the buccal cusps of the mandibular teeth being positioned more towards the buccal side.
- Key Features:
- Maxillary Teeth Positioning: The maxillary posterior teeth are positioned more towards the center of the arch, while the mandibular posterior teeth are positioned buccally.
- Functional Balance: This arrangement allows for better functional balance and stability during chewing, as the maxillary teeth provide support to the mandibular teeth.
- Advantages: Lingualized occlusion can enhance the esthetics and function of complete dentures, particularly in patients with a well-defined ridge.
The clinical implications of an edentulous stomatognathic system are considered under the following factors:
(1) modi?cations in areas of support .
(2) functional and parafunctional considerations.
(3) changes in morphologic face height, and temporomandibular joint (TMJ).
(4) cosmetic changes and adaptive responses
Support mechanism for complete dentures
Mucosal support and masticatory loads
- The area of mucosa available to receive the load from complete dentures is limited when compared with the corresponding areas of support available for natural dentitions.
- The mean denture bearing area to be 22.96 cm2 in the edentulous maxillae and approximately 12.25 cm2 in an edentulous mandible
- In fact, any disturbance of the normal metabolic processes may lower the upper limit of mucosal tolerance and initiate in?ammation
Residual ridge
The residual ridge consists of denture-bearing mucosa, the submucosa and periosteum, and the underlying residual alveolar bone.
The alveolar bone supporting natural teeth receives tensile loads through a large area of periodontal ligament, whereas the edentulous residual ridge receives vertical, diagonal, and horizontal loads applied by a denture with a surface area much smaller than the total area of the periodontal ligaments of all the natural teeth that had been present.
There are two physical factors involved in denture retention that are under the control of the dentist
- The maximal extension of the denture base
- maximal intimate contact of the denture base and its basal seat
- The buccinator, the orbicularis oris, and the intrinsic and extrinsic muscles of the tongue are the key muscles that the dentist harnesses to achieve this objective by means of impression techniques.
- The design of the labial buccal and lingual polished surface of the denture and the form of the dental arch are considered in balancing the forces generated by the tongue and perioral musculature.
Function: mastication and other mandibular movements
Mastication consists of a rhythmic separation and apposition of the jaws and involves biophysical and biochemical processes, including the use of the lips, teeth, cheeks, tongue, palate, and all the oral structures to prepare food for swallowing.
- The maximal bite force in denture wearers is ?ve to six times less than that in dentulous individuals.
- The pronounced differences between persons with natural teeth and patients with complete dentures are conspicuous in this functional context:
(1) the mucosal mechanism of support as opposed to support by the periodontium ;
(2) the movements of the dentures during mastication;
(3) the progressive changes in maxillomandibular relations and the eventual migration of dentures
(4) the different physical stimuli to the sensor motor systems.
Parafunctional considerations
- Parafunctional habits involving repeated or sustained occlusion of the teeth can be harmful to the teeth or other components of the masticatory system.
- Teeth clenching is common and is a frequent cause of the complaint of soreness of the denture-bearing mucosa.
- In the denture wearer, parafunctional habits can cause additional loading on the denture-bearing tissues
Force generated during mastication and parafunction
Functional (Mastication)
Direction -> Mainly vertical
Duration and magnitude -> Intermittent and light diurnal only
Parafunction
Direction -> Frequently horizontalas well as vertical
Duration and magnitude -> Prolonged, possibly excessive Both diurnal and nocturnal
Changes in morphology (face height), occlusion, and the TMJs
The reduction of the residual ridges under complete dentures and the accompanying reduction in vertical dimension of occlusion tend to cause a reduction in the total face height and a resultant mandibular prognathism.
In complete denture wearers, the mean reduction in height of the mandibular residual alveolar ridge measured in the anterior region may be approximately four times greater than the mean reduction occurring in the maxillary residual alveolar process
Occlusion
- In complete denture prosthodontics, the position of planned maximum intercuspation of teeth is established to coincide with the patient’s centric relation.
-The coincidence of centric relation and centric occlusion is consequently referred to as centric relation occlusion (CRG).
- Centric relation at the established vertical dimension has potential for change. This change is brought about by alterations indenture-supporting tissues and facial height, as well as by morphological changes in the TMJs.
TMJ changes
impaired dental ef?ciency resulting from partial tooth loss and absence of or incorrect prosthodontic treatment can in?uence the outcome of temporomandibular disorders.
Aesthetic, behavioral, and adaptive response
Aesthetic changes associated with the edentulous state.
- Deepening of nasolabial groove
- Loss of labiodentals angle
- Narrowing of lips
- Increase in columellae philtral angle
- Prognathic appearance
Applegate's Classification is a system used to categorize edentulous
(toothless) arches in preparation for denture construction. The classification
is based on the amount and quality of the remaining alveolar ridge, the
relationship of the ridge to the residual ridges, and the presence of undercuts.
The system is primarily used in the context of complete denture prosthodontics
to determine the best approach for achieving retention, stability, and support
for the dentures.
Applegate's Classification for edentulous arches:
1. Class I: The alveolar ridge has a favorable arch form and sufficient height
and width to provide adequate support for a complete denture without the need
for extensive modifications. This is the ideal scenario for denture
construction.
2. Class II: The alveolar ridge has a favorable arch form but lacks the
necessary height or width to provide adequate support. This may require the use
of denture modifications such as flanges to enhance retention and support.
3. Class III: The ridge lacks both height and width, and there may be undercuts
or excessive resorption. In this case, additional procedures such as ridge
augmentation or the use of implants might be necessary to improve the foundation
for the denture.
4. Class IV: The ridge has an unfavorable arch form, often with significant
resorption, and may require extensive surgical procedures or adjuncts like
implants to achieve a functional and stable denture.
5. Class V: This is the most severe classification where the patient has no
residual alveolar ridge, possibly due to severe resorption, trauma, or surgical
removal. In such cases, the creation of a functional and stable denture may be
highly challenging and might necessitate advanced surgical procedures and/or the
use of alternative prosthetic options like over-dentures with implant support.
It's important to note that this classification is a guide, and individual
patient cases may present with a combination of features from different classes
or may require customized treatment plans based on unique anatomical and
functional requirements.