Talk to us?

Prosthodontics - NEETMDS- courses
NEET MDS Lessons
Prosthodontics

Kennedy's Classification is a system used in dentistry to categorize the edentulous spaces (areas without teeth) in the mouth of a patient who is fully or partially edentulous. This classification system helps in planning the treatment, designing the dentures, and predicting the outcomes of denture therapy. It was developed by Dr. Edward Kennedy in 1925 and is widely used by dental professionals.

The classification is based on the relationship between the remaining teeth, the residual alveolar ridge, and the movable tissues of the oral cavity. It is particularly useful for patients who are wearing or will be wearing complete or partial dentures.

There are four main classes of Kennedy's Classification:

1. Class I: In this class, the patient has a bilateral edentulous area with no remaining teeth on either side of the arch. This means that the patient has a full denture on the upper and lower jaws with no natural tooth support.

2. Class II: The patient has a unilateral edentulous area with natural teeth remaining only on one side of the arch. This could be either the upper or lower jaw. The edentulous side has a complete denture that is supported by the teeth on the opposite side and the buccal (cheek) and lingual (tongue) tissues.

3. Class III: There is a unilateral edentulous area with natural teeth remaining on both sides of the arch, but the edentulous area does not include the anterior (front) teeth. This means the patient has a partial denture on one side of the arch, with the rest of the teeth acting as support for the denture.

4. Class IV: The patient has a unilateral edentulous area with natural teeth remaining only on the anterior region of the edentulous side. The posterior (back) section of the same side is missing, and there may or may not be teeth on the opposite side. This situation requires careful consideration for the design of the partial denture to ensure stability and retention.

Each class is further divided into subcategories (A, B, and C) to account for variations in the amount of remaining bone support and the presence or absence of undercuts, which are areas where the bone curves inward and can affect the stability of the denture.

- Class I (A, B, C): Variations in the amount of bone support and presence of undercuts in the fully edentulous arches.
- Class II (A, B, C): Variations in the amount of bone support and presence of undercuts in the edentulous area with natural teeth on the opposite side.
- Class III (A, B, C): Variations in the amount of bone support and presence of undercuts in the edentulous area with natural teeth on the same side, but not in the anterior region.
- Class IV (A, B, C): Variations in the amount of bone support and presence of undercuts in the edentulous area with natural teeth remaining only in the anterior region of the edentulous side.

Understanding a patient's Kennedy's Classification helps dentists and dental technicians to create well-fitting and functional dentures, which are crucial for the patient's comfort, speech, chewing ability, and overall oral health.

Complete Denture Occlusion

Complete denture occlusion is a critical aspect of prosthodontics, as it affects the function, stability, and comfort of the dentures. There are three primary types of occlusion used in complete dentures: Balanced Occlusion, Monoplane Occlusion, and Lingualized Occlusion. Each type has its own characteristics and applications.

Types of Complete Denture Occlusion

1. Balanced Occlusion

  • Definition: Balanced occlusion is characterized by simultaneous contact of all opposing teeth in centric occlusion, providing stability and even distribution of occlusal forces.
  • Key Features:
    • Three-Point Contact: While a three-point contact (one anterior and two posterior) is a starting point, it is not sufficient for true balanced occlusion. Instead, there should be simultaneous contact of all teeth.
    • Minimal Occlusal Balance: For minimal occlusal balance, there should be at least three points of contact on the occlusal plane. The more points of contact, the better the balance.
    • Absence in Natural Dentition: Balanced occlusion is not typically found in natural dentition; it is a concept specifically applied to complete dentures to enhance stability during function.
  • Importance: This type of occlusion is particularly important for patients with complete dentures, as it helps to minimize tipping and movement of the dentures during chewing and speaking.

2. Monoplane Occlusion

  • Definition: Monoplane occlusion involves a flat occlusal plane where the occlusal surfaces of the teeth are arranged in a single plane.
  • Key Features:
    • Flat Occlusal Plane: The occlusal surfaces are designed to be flat, which simplifies the occlusion and reduces the complexity of the denture design.
    • Limited Interference: This type of occlusion minimizes interferences during lateral and protrusive movements, making it easier for patients to adapt to their dentures.
  • Applications: Monoplane occlusion is often used in cases where the residual ridge is severely resorbed or in patients with limited jaw movements.

3. Lingualized Occlusion

  • Definition: Lingualized occlusion is characterized by the positioning of the maxillary posterior teeth in a way that they occlude with the mandibular posterior teeth, with the buccal cusps of the mandibular teeth being positioned more towards the buccal side.
  • Key Features:
    • Maxillary Teeth Positioning: The maxillary posterior teeth are positioned more towards the center of the arch, while the mandibular posterior teeth are positioned buccally.
    • Functional Balance: This arrangement allows for better functional balance and stability during chewing, as the maxillary teeth provide support to the mandibular teeth.
  • Advantages: Lingualized occlusion can enhance the esthetics and function of complete dentures, particularly in patients with a well-defined ridge.

The mental attitude of patients towards complete dentures plays a significant role in the success of their treatment. Understanding these attitudes can help dental professionals tailor their approach to meet the needs and expectations of their patients. Here are the four primary mental attitudes that patients may exhibit:

1. Philosophical (Ideal Attitude)

  • Characteristics:
    • Accepts the dentist's judgment without question.
    • Exhibits a rational, sensible, calm, and composed disposition.
    • Open to discussing treatment options and understands the importance of oral health.
  • Implications for Treatment:
    • This type of patient is likely to follow the dentist's recommendations and cooperate throughout the treatment process.
    • They are more likely to have realistic expectations and be satisfied with the outcomes.

2. Indifferent

  • Characteristics:
    • Shows little concern for their oral health.
    • Seeks treatment primarily due to pressure from family or friends.
    • Requires additional time and education to understand the importance of dental care.
    • Their attitude can be discouraging to dentists, as they may not fully engage in the treatment process.
  • Implications for Treatment:
    • Dentists may need to invest extra effort in educating these patients about the benefits of complete dentures and the importance of oral health.
    • Building rapport and trust is essential to encourage a more proactive attitude towards treatment.

3. Critical/Exacting

  • Characteristics:
    • Has previously had multiple sets of complete dentures and tends to find fault with everything.
    • Often has high expectations and may be overly critical of the treatment process.
    • May require medical consultation due to previous experiences or health concerns.
  • Implications for Treatment:
    • Dentists should be prepared to address specific concerns and provide detailed explanations about the treatment plan.
    • It is important to manage expectations and ensure that the patient understands the limitations and possibilities of denture treatment.

4. Skeptical/Hysterical

  • Characteristics:
    • Has had negative experiences with previous treatments, leading to doubt and skepticism about the current treatment.
    • Often presents with poor oral health, resorbed ridges, and other unfavorable conditions.
    • May exhibit anxiety or hysteria regarding dental procedures.
  • Implications for Treatment:
    • Building trust and confidence is crucial for these patients. Dentists should take the time to listen to their concerns and provide reassurance.
    • A gentle and empathetic approach is necessary to help alleviate fears and encourage cooperation.
    • It may be beneficial to involve them in the decision-making process to empower them and reduce anxiety.

LIMITING STRUCTURES

A) Labial, lingual & buccal frenum

- It is fibrous band extending from the labial aspect of the residual alveolar ridge to the lip containing a band of the fibrous connective tissue the that helps in attachment of the orbicularis oris muscle.
- It is quite sensitive hence the denture should have an appropriate labial notch.
- The fibers of buccinator are attached to the buccal frenum.
- Should be relieved to prevent displacement of the denture during function.
- The lingual frenum relief should be provided in the anterior portion of the lingual flange. 
- This anterior portion of the lingual flange called sub-lingual crescent area.
- The lingual notch of the denture should be well adapted otherwise it will affect the denture stability.
 
B) Labial & buccal vestibule
 
-     The labial sulcus runs from the labial frenum to the buccal frenum on each side.
-     Mentalis muscle is quite active in this region.
-     The buccal sulcus extends posteriorly from the buccal frenum to outside back corner of the retromolar region.
-     Area maximization can be safely done here as because the fibers of the buccinator runs parallel to the border and hence displacing action due to buccinator during its contraction is slight.

-     The impression is the widest in this region.
 
C) Alveololingual sulcus

-     Between lingual frenum to retromylohyoid curtain.
-     Overextension causes soreness and instability.

It can be divided into three parts:
i) Anterior part :
-     From lingual frenum to mylohyoid ridge
-     The shallowest portion(least height) of the lingual flange
ii) Middle region :
-     From the premylohyoid fossa to the the distal end of the mylohyoid region
iii) Posterior portion :
-     From the end of the mylohyoid ridge end to the retromylohyoid curtain
-     Provides for a valuable undercut area so important retention
-     Overextension causes soreness and instability
-     Proper recording gives typical S –form of the lingual flange
 
D) Retromolar pad
-     Pear-shaped triangular soft pad of tissue at the distal end of the lower ridge is referred to as the retromolar pad.
-     It is an important structure, which forms the posterior seal of the mandibular denture.
-     The denture base should extend up to 2/3rd of the retromolar pad triangle.

E) Pterygomandibular raphe
 
 SUPPORTING STRUCTURES

A) Primary stress bearing area / Supporting area
 
1.    Buccal shelf area
-     Extends from buccal frenum to retromolar pad.
-     Between external oblique ridge and crest of alveolar ridge.

Its boundaries are:
1.    Medially the crest of the ridge
2.    Laterally the external oblique ridge
3.    Distally the retromolar pad
4.    Mesially the buccal frenum
The width of this area increases as the alveolar resorption continues.
 
B) Secondary stress bearing area / Supporting area
 
1.    Residual alveolar ridge
-     Buccal and lingual slopes are secondary stress bearing areas.
 
RELIEF AREAS
A) Mylohyoid ridge
 
-     Attachment for the mylohyoid muscle.
-     Running along the lingual surface of the mandible.
-     Anteriorly: the ridge lies close to the inferior border of the mandible.
-     Posteriorly it lies close to the residual ridge.
-     Covered by the thin mucosa which may be traumatized by denture base hence it should be relieved.
-     The extension of the lingual flange is to be beyond the palpable position of the mylohyoid ridge but not in the undercut.
 
B) Mental foramen
-     Lies on the external surface of the mandible in between the 1st and the 2nd premolar region.
-     It should be relieved specially in case it lies close to the residual alveolar ridge due to ridge resorption to prevent parasthesia.
 
C) Genial tubercle
-     Area of muscle attachment (Genioglossus and Geniohyoid).
-     Lies away from the crest of the ridge.
-     Prominent in resorbed ridges therefore adequate relief to be provided.
 
D) Torus mandibularis
-     Abnormal bony prominence.
-     Bilaterally on the lingual side near the premolar area.
-     Covered by thin mucosa so it should be relieved

Articulators in Prosthodontics

An articulator is a mechanical device that simulates the temporomandibular joint (TMJ) and jaw movements, allowing for the attachment of maxillary and mandibular casts. This simulation is essential for diagnosing, planning, and fabricating dental prostheses, as it helps in understanding the relationship between the upper and lower jaws during functional movements.

Classification of Articulators

Class I: Simple Articulators

  • Description: These are simple holding instruments that can accept a static registration of the dental casts.
  • Characteristics:
    • Limited to hinge movements.
    • Do not allow for any dynamic or eccentric movements.
  • Examples:
    • Slab Articulator: A basic device that holds casts in a fixed position.
    • Hinge Joint: Mimics the hinge action of the jaw.
    • Barndor: A simple articulator with limited functionality.
    • Gysi Semplex: A basic articulator for static registrations.

Class II: Semi-Adjustable Articulators

  • Description: These instruments permit horizontal and vertical motion but do not orient the motion of the TMJ via face bow transfer.
  • Subcategories:
    • IIA: Eccentric motion is permitted based on average or arbitrary values.
      • Examples: Mean Value Articulator, Simplex.
    • IIB: Limited eccentric motion is possible based on theories of arbitrary motion.
      • Examples: Monson's Articulator, Hall's Articulator.
    • IIC: Limited eccentric motion is possible based on engraved records obtained from the patient.
      • Example: House Articulator.

Class III: Fully Adjustable Articulators

  • Description: These articulators permit horizontal and vertical positions and accept face bow transfer and protrusive registrations.
  • Subcategories:
    • IIIA: Accept a static protrusive registration and use equivalents for other types of motion.
      • Examples: Hanau Mate, Dentatus, Arcon.
    • IIIB: Accept static lateral registration in addition to protrusive and face bow transfer.
      • Examples: Ney, Teledyne, Hanau Universit series, Trubyte, Kinescope.

Class IV: Fully Adjustable Articulators with Dynamic Registration

  • Description: These articulators accept 3D dynamic registrations and utilize a face bow transfer.
  • Subcategories:
    • IVA: The condylar path registered cannot be modified.
      • Examples: TMJ Articulator, Stereograph.
    • IVB: They allow customization of the condylar path.
      • Examples: Stuart Instrument, Gnathoscope, Pantograph, Pantronic.

Key Points

  • Face Bow Transfer: Class I and Class II articulators do not accept face bow transfers, which are essential for accurately positioning the maxillary cast relative to the TMJ.
  • Dynamic vs. Static Registrations: Class III and IV articulators allow for more complex movements and registrations, which are crucial for creating functional and esthetic dental prostheses.

Arrangement of Teeth in Complete Dentures

The arrangement of teeth in complete dentures is a critical aspect of prosthodontics that affects both the function and aesthetics of the prosthesis. The following five principal factors must be considered when arranging teeth for complete dentures:

1. Position of the Arch

  • Definition: The position of the arch refers to the spatial relationship of the maxillary and mandibular dental arches.
  • Considerations:
    • The relationship between the arches should be established based on the patient's occlusal plane and the anatomical landmarks of the residual ridges.
    • Proper positioning ensures that the dentures fit well and function effectively during mastication and speech.
    • The arch position also influences the overall balance and stability of the denture.

2. Contour of the Arch

  • Definition: The contour of the arch refers to the shape and curvature of the dental arch.
  • Considerations:
    • The contour should mimic the natural curvature of the dental arch to provide a comfortable fit and proper occlusion.
    • The arch contour affects the positioning of the teeth, ensuring that they align properly with the opposing arch.
    • A well-contoured arch enhances the esthetics and function of the denture, allowing for effective chewing and speaking.

3. Orientation of the Plane

  • Definition: The orientation of the plane refers to the angulation of the occlusal plane in relation to the horizontal and vertical planes.
  • Considerations:
    • The occlusal plane should be oriented to facilitate proper occlusion and function, taking into account the patient's facial features and anatomical landmarks.
    • The orientation affects the alignment of the teeth and their relationship to the surrounding soft tissues.
    • Proper orientation helps in achieving balanced occlusion and minimizes the risk of denture displacement during function.

4. Inclination of Occlusion

  • Definition: The inclination of occlusion refers to the angulation of the occlusal surfaces of the teeth in relation to the vertical axis.
  • Considerations:
    • The inclination should be designed to allow for proper interdigitation of the teeth during occlusion.
    • It influences the distribution of occlusal forces and the overall stability of the denture.
    • The inclination of occlusion should be adjusted based on the patient's functional needs and the type of occlusion being utilized (e.g., balanced, monoplane, or lingualized).

5. Positioning for Esthetics

  • Definition: Positioning for esthetics involves arranging the teeth in a way that enhances the patient's facial appearance and smile.
  • Considerations:
    • The arrangement should consider the patient's age, gender, and facial features to create a natural and pleasing appearance.
    • The size, shape, and color of the teeth should be selected to match the patient's natural dentition and facial characteristics.
    • Proper positioning for esthetics not only improves the appearance of the dentures but also boosts the patient's confidence and satisfaction with their prosthesis.

Anatomy of Maxilary Edentulous Ridge

LIMITING STRUCTURES

A) Labial & buccal frenum

- Fibrous band covered by mucous membrane.

- A v-shaped notch (labial notch) should be provided very carefully which should be narrow but deep enough to avoid interference

- Buccal frenum has the attachment of following muscles; levator anguli 

- It needs greater clearance on buccal flange of the denture (shallower and wider) than the labial frenum.

B) Labial & buccal vestibule (sulcus)

- Labial sulcus is bounded on one side by the teeth, gingiva and residual alveolar ridge and on the outer side by lips.

- Buccal sulcus extends from buccal frenum anteriorly to the hamular notch posteriorly.

- The size of the vestibule is dependant upon:

i) Contraction of buccinator muscle.

ii) Position of the mandible.

iii) Amount of bone loss in maxilla.

C) Hamular notch

It is depression situated between the maxillary tuberosity and the hamulus of the medial pterygoid plate. It is a soft area of loose connective tissue.

- it houses the disto-lateral termination of the denture.

- Aids in achieving posterior palatal seal.

- Overextension causes soreness.

- Underextension poor retention

D) Posterior palatal seal area (post-dam)

It is a soft tissue area at or beyond the junction of the hard and soft palates on which pressure within physiological limits can be applied by a complete denture to aid in its retention.

Extensions:

1. Anteriorly – Anterior vibrating line

2. Posteriorly – Posterior vibrating line

3. Laterally – 3-4 mm anterolateral to hamular notch

SUPPORTING STRUCTURES

 A) Primary stress bearing area / Supporting area

1. Posterior part of the palate

2. Posterolateral part of the residual alveolar ridge

B) Secondary stress bearing area / Supporting area

1. The palatal rugae area
2. Maxillary tuberosity

 RELIEF AREAS

A) Incisive papilla

- Midline structure situated behind the central incisors.

- It is an exit point of nasopalatine nerves and vessels.

- It should be relieved if not, the denture will compress the nerve or vessels and lead to necrosis of the distributing areas and paresthesia of anterior palate.

B) Mid-palatine raphe

 - Extends from incisive papilla to distal end of hard palate.

- Median suture area covered by thin submucosa

- Relief is to be provided as it is supposed to be the most sensitive part of the palate to pressure

 C) Crest of the residual alveolar ridge

 D) Fovea palatinae

Few areas like the cuspid eminence , fovea palatinae and torus palatinus may be relieved according to condition required.

Explore by Exams