Talk to us?

Prosthodontics - NEETMDS- courses
NEET MDS Lessons
Prosthodontics

LIMITING STRUCTURES

A) Labial, lingual & buccal frenum

- It is fibrous band extending from the labial aspect of the residual alveolar ridge to the lip containing a band of the fibrous connective tissue the that helps in attachment of the orbicularis oris muscle.
- It is quite sensitive hence the denture should have an appropriate labial notch.
- The fibers of buccinator are attached to the buccal frenum.
- Should be relieved to prevent displacement of the denture during function.
- The lingual frenum relief should be provided in the anterior portion of the lingual flange. 
- This anterior portion of the lingual flange called sub-lingual crescent area.
- The lingual notch of the denture should be well adapted otherwise it will affect the denture stability.
 
B) Labial & buccal vestibule
 
-     The labial sulcus runs from the labial frenum to the buccal frenum on each side.
-     Mentalis muscle is quite active in this region.
-     The buccal sulcus extends posteriorly from the buccal frenum to outside back corner of the retromolar region.
-     Area maximization can be safely done here as because the fibers of the buccinator runs parallel to the border and hence displacing action due to buccinator during its contraction is slight.

-     The impression is the widest in this region.
 
C) Alveololingual sulcus

-     Between lingual frenum to retromylohyoid curtain.
-     Overextension causes soreness and instability.

It can be divided into three parts:
i) Anterior part :
-     From lingual frenum to mylohyoid ridge
-     The shallowest portion(least height) of the lingual flange
ii) Middle region :
-     From the premylohyoid fossa to the the distal end of the mylohyoid region
iii) Posterior portion :
-     From the end of the mylohyoid ridge end to the retromylohyoid curtain
-     Provides for a valuable undercut area so important retention
-     Overextension causes soreness and instability
-     Proper recording gives typical S –form of the lingual flange
 
D) Retromolar pad
-     Pear-shaped triangular soft pad of tissue at the distal end of the lower ridge is referred to as the retromolar pad.
-     It is an important structure, which forms the posterior seal of the mandibular denture.
-     The denture base should extend up to 2/3rd of the retromolar pad triangle.

E) Pterygomandibular raphe
 
 SUPPORTING STRUCTURES

A) Primary stress bearing area / Supporting area
 
1.    Buccal shelf area
-     Extends from buccal frenum to retromolar pad.
-     Between external oblique ridge and crest of alveolar ridge.

Its boundaries are:
1.    Medially the crest of the ridge
2.    Laterally the external oblique ridge
3.    Distally the retromolar pad
4.    Mesially the buccal frenum
The width of this area increases as the alveolar resorption continues.
 
B) Secondary stress bearing area / Supporting area
 
1.    Residual alveolar ridge
-     Buccal and lingual slopes are secondary stress bearing areas.
 
RELIEF AREAS
A) Mylohyoid ridge
 
-     Attachment for the mylohyoid muscle.
-     Running along the lingual surface of the mandible.
-     Anteriorly: the ridge lies close to the inferior border of the mandible.
-     Posteriorly it lies close to the residual ridge.
-     Covered by the thin mucosa which may be traumatized by denture base hence it should be relieved.
-     The extension of the lingual flange is to be beyond the palpable position of the mylohyoid ridge but not in the undercut.
 
B) Mental foramen
-     Lies on the external surface of the mandible in between the 1st and the 2nd premolar region.
-     It should be relieved specially in case it lies close to the residual alveolar ridge due to ridge resorption to prevent parasthesia.
 
C) Genial tubercle
-     Area of muscle attachment (Genioglossus and Geniohyoid).
-     Lies away from the crest of the ridge.
-     Prominent in resorbed ridges therefore adequate relief to be provided.
 
D) Torus mandibularis
-     Abnormal bony prominence.
-     Bilaterally on the lingual side near the premolar area.
-     Covered by thin mucosa so it should be relieved

Kennedy's Classification is a system used in dentistry to categorize the edentulous spaces (areas without teeth) in the mouth of a patient who is fully or partially edentulous. This classification system helps in planning the treatment, designing the dentures, and predicting the outcomes of denture therapy. It was developed by Dr. Edward Kennedy in 1925 and is widely used by dental professionals.

The classification is based on the relationship between the remaining teeth, the residual alveolar ridge, and the movable tissues of the oral cavity. It is particularly useful for patients who are wearing or will be wearing complete or partial dentures.

There are four main classes of Kennedy's Classification:

1. Class I: In this class, the patient has a bilateral edentulous area with no remaining teeth on either side of the arch. This means that the patient has a full denture on the upper and lower jaws with no natural tooth support.

2. Class II: The patient has a unilateral edentulous area with natural teeth remaining only on one side of the arch. This could be either the upper or lower jaw. The edentulous side has a complete denture that is supported by the teeth on the opposite side and the buccal (cheek) and lingual (tongue) tissues.

3. Class III: There is a unilateral edentulous area with natural teeth remaining on both sides of the arch, but the edentulous area does not include the anterior (front) teeth. This means the patient has a partial denture on one side of the arch, with the rest of the teeth acting as support for the denture.

4. Class IV: The patient has a unilateral edentulous area with natural teeth remaining only on the anterior region of the edentulous side. The posterior (back) section of the same side is missing, and there may or may not be teeth on the opposite side. This situation requires careful consideration for the design of the partial denture to ensure stability and retention.

Each class is further divided into subcategories (A, B, and C) to account for variations in the amount of remaining bone support and the presence or absence of undercuts, which are areas where the bone curves inward and can affect the stability of the denture.

- Class I (A, B, C): Variations in the amount of bone support and presence of undercuts in the fully edentulous arches.
- Class II (A, B, C): Variations in the amount of bone support and presence of undercuts in the edentulous area with natural teeth on the opposite side.
- Class III (A, B, C): Variations in the amount of bone support and presence of undercuts in the edentulous area with natural teeth on the same side, but not in the anterior region.
- Class IV (A, B, C): Variations in the amount of bone support and presence of undercuts in the edentulous area with natural teeth remaining only in the anterior region of the edentulous side.

Understanding a patient's Kennedy's Classification helps dentists and dental technicians to create well-fitting and functional dentures, which are crucial for the patient's comfort, speech, chewing ability, and overall oral health.

Applegate's Classification is a system used to categorize edentulous (toothless) arches in preparation for denture construction. The classification is based on the amount and quality of the remaining alveolar ridge, the relationship of the ridge to the residual ridges, and the presence of undercuts. The system is primarily used in the context of complete denture prosthodontics to determine the best approach for achieving retention, stability, and support for the dentures.

Applegate's Classification for edentulous arches:

1. Class I: The alveolar ridge has a favorable arch form and sufficient height and width to provide adequate support for a complete denture without the need for extensive modifications. This is the ideal scenario for denture construction.

2. Class II: The alveolar ridge has a favorable arch form but lacks the necessary height or width to provide adequate support. This may require the use of denture modifications such as flanges to enhance retention and support.

3. Class III: The ridge lacks both height and width, and there may be undercuts or excessive resorption. In this case, additional procedures such as ridge augmentation or the use of implants might be necessary to improve the foundation for the denture.

4. Class IV: The ridge has an unfavorable arch form, often with significant resorption, and may require extensive surgical procedures or adjuncts like implants to achieve a functional and stable denture.

5. Class V: This is the most severe classification where the patient has no residual alveolar ridge, possibly due to severe resorption, trauma, or surgical removal. In such cases, the creation of a functional and stable denture may be highly challenging and might necessitate advanced surgical procedures and/or the use of alternative prosthetic options like over-dentures with implant support.

It's important to note that this classification is a guide, and individual patient cases may present with a combination of features from different classes or may require customized treatment plans based on unique anatomical and functional requirements.

Impression making is a critical step in prosthodontics and orthodontics, as it captures the details of the oral cavity for the fabrication of dental prostheses. There are several techniques for making impressions, each with its own principles and applications. Here, we will discuss three primary impression-making techniques: Mucostatic, Mucocompressive, and Selective Pressure Impression Techniques.

1. Mucostatic or Passive Impression Technique

  • Proposed by: Richardson and Henry Page
  • Materials Used: Plaster of Paris and Alginate
  • Key Features:
    • Relaxed Condition: Records the oral mucous membrane and jaws in a normal, relaxed condition.
    • Tray Design: Utilizes an oversized tray to accommodate the relaxed tissues.
    • Tissue Contact: Achieves intimate contact of the tissues with the denture base, which enhances stability.
    • Peripheral Seal: This technique has a poor peripheral seal, which can affect retention.
    • Outcome: The resulting denture will have good stability but poor retention due to the lack of a proper seal.

2. Mucocompressive Impression Technique

  • Proposed by: Carole Jones
  • Materials Used: Impression compound and Zinc Oxide Eugenol (ZoE)
  • Key Features:
    • Functional Recording: Records the oral tissues in a functional and displaced form, capturing the active state of the tissues.
    • Retention: Provides good retention due to the compression of the tissues during the impression process.
    • Displacement Issues: Dentures made using this technique may tend to get displaced due to tissue rebound when the tissues return to their resting state after the impression is taken.

3. Selective Pressure Impression Technique

  • Proposed by: Boucher
  • Materials Used: Special tray with Zinc Oxide Eugenol (ZoE) wash impression
  • Key Features:
    • Stress Distribution: Loads acting on the denture are transmitted to the stress-bearing areas of the oral tissues.
    • Tray Design: A special tray is designed such that the tissues contacted by the tray are recorded under pressure, while the tissues not contacted by the tray are recorded in a state of rest.
    • Balanced Recording: This technique allows for a more balanced impression, capturing both the functional and relaxed states of the oral tissues.

Porosity

Porosity refers to the presence of voids or spaces within a solid material. In the context of prosthodontics, it specifically pertains to the presence of small cavities or air bubbles within a cast metal alloy. These defects can vary in size, distribution, and number, and are generally undesirable because they compromise the integrity and mechanical properties of the cast restoration.

 Causes of Porosity Defects

Porosity in castings can arise from several factors, including:

1. Incomplete Burnout of the Investment Material: If the wax pattern used to create the mold is not completely removed by the investment material during the burnout process, gases can become trapped and leave pores as the metal cools and solidifies.
2. Trapped Air Bubbles: Air can become trapped in the investment mold during the mixing and pouring of the casting material. If not properly eliminated, these air bubbles can lead to porosity when the metal is cast.
3. Rapid Cooling: If the metal cools too quickly, the solidification process may not be complete, leaving small pockets of unsolidified metal that shrink and form pores as they solidify.
4. Contamination: The presence of contaminants in the metal alloy or investment material can also lead to porosity. These contaminants can react with the metal, forming gases that become trapped and create pores.
5. Insufficient Investment Compaction: If the investment material is not packed tightly around the wax pattern, small air spaces may remain, which can become pores when the metal is cast.
6. Gas Formation During Casting: Certain reactions between the metal alloy and the investment material or other substances in the casting environment can produce gases that become trapped in the metal.
7. Metal-Mold Interactions: Sometimes, the metal can react with the mold material, resulting in gas formation or the entrapment of mold material within the metal, which then appears as porosity.
8. Incorrect Spruing and Casting Design: Poorly designed sprues can lead to turbulent metal flow, causing air entrapment and subsequent porosity. Additionally, a complex casting design may result in areas where metal cannot flow properly, leading to incomplete filling of the mold and the formation of pores.

 Consequences of Porosity Defects

The presence of porosity in a cast restoration can have several negative consequences:

1. Reduced Strength: The pores within the metal act as stress concentrators, weakening the material and making it more prone to fracture or breakage under functional loads.
2. Poor Fit: The pores can prevent the metal from fitting snugly against the prepared tooth, leading to a poor marginal fit and potential for recurrent decay or gum irritation.
3. Reduced Biocompatibility: The roughened surfaces and irregularities created by porosity can harbor plaque and bacteria, which can lead to peri-implant or periodontal disease.
4. Aesthetic Issues: In visible areas, porosity can be unsightly, affecting the overall appearance of the restoration.
5. Shortened Service Life: Prosthodontic restorations with porosity defects are more likely to fail prematurely, requiring earlier replacement.
6. Difficulty in Polishing and Finishing: The presence of porosity makes it challenging to achieve a smooth, polished finish, which can affect the comfort and longevity of the restoration.

 Prevention and Management of Porosity

To minimize porosity defects in prosthodontic castings, the following steps can be taken:

1. Proper Investment Technique: Carefully follow the manufacturer's instructions for mixing and investing the wax pattern to ensure complete burnout and minimize trapped air bubbles.
2. Slow and Controlled Cooling: Allowing the metal to cool slowly and uniformly can help to reduce the formation of pores by allowing gases to escape more easily.
3. Pre-casting De-gassing: Some techniques involve degassing the investment mold before casting to remove any trapped gases.
4. Cleanliness: Ensure that the metal alloy and investment materials are free from contaminants.
5. Correct Casting Procedure: Use proper casting techniques to reduce turbulence and ensure a smooth flow of metal into the mold.
6. Appropriate Casting Design: Design the restoration with proper spruing and a simple, well-thought-out pattern to allow for even metal flow and minimize trapped air.
7. Proper Casting Conditions: Control the casting environment to reduce the likelihood of gas formation during the casting process.
8. Inspection and Quality Control: Carefully inspect the cast restoration for porosity under magnification and radiographs before it is delivered to the patient.
9. Repair or Replacement: When porosity defects are detected, they may be repairable through techniques such as metal condensation, spot welding, or adding metal with a pin connector. However, in some cases, the restoration may need to be recast to ensure optimal quality.

Anatomy of Maxilary Edentulous Ridge

LIMITING STRUCTURES

A) Labial & buccal frenum

- Fibrous band covered by mucous membrane.

- A v-shaped notch (labial notch) should be provided very carefully which should be narrow but deep enough to avoid interference

- Buccal frenum has the attachment of following muscles; levator anguli 

- It needs greater clearance on buccal flange of the denture (shallower and wider) than the labial frenum.

B) Labial & buccal vestibule (sulcus)

- Labial sulcus is bounded on one side by the teeth, gingiva and residual alveolar ridge and on the outer side by lips.

- Buccal sulcus extends from buccal frenum anteriorly to the hamular notch posteriorly.

- The size of the vestibule is dependant upon:

i) Contraction of buccinator muscle.

ii) Position of the mandible.

iii) Amount of bone loss in maxilla.

C) Hamular notch

It is depression situated between the maxillary tuberosity and the hamulus of the medial pterygoid plate. It is a soft area of loose connective tissue.

- it houses the disto-lateral termination of the denture.

- Aids in achieving posterior palatal seal.

- Overextension causes soreness.

- Underextension poor retention

D) Posterior palatal seal area (post-dam)

It is a soft tissue area at or beyond the junction of the hard and soft palates on which pressure within physiological limits can be applied by a complete denture to aid in its retention.

Extensions:

1. Anteriorly – Anterior vibrating line

2. Posteriorly – Posterior vibrating line

3. Laterally – 3-4 mm anterolateral to hamular notch

SUPPORTING STRUCTURES

 A) Primary stress bearing area / Supporting area

1. Posterior part of the palate

2. Posterolateral part of the residual alveolar ridge

B) Secondary stress bearing area / Supporting area

1. The palatal rugae area
2. Maxillary tuberosity

 RELIEF AREAS

A) Incisive papilla

- Midline structure situated behind the central incisors.

- It is an exit point of nasopalatine nerves and vessels.

- It should be relieved if not, the denture will compress the nerve or vessels and lead to necrosis of the distributing areas and paresthesia of anterior palate.

B) Mid-palatine raphe

 - Extends from incisive papilla to distal end of hard palate.

- Median suture area covered by thin submucosa

- Relief is to be provided as it is supposed to be the most sensitive part of the palate to pressure

 C) Crest of the residual alveolar ridge

 D) Fovea palatinae

Few areas like the cuspid eminence , fovea palatinae and torus palatinus may be relieved according to condition required.

Arrangement of Teeth in Complete Dentures

The arrangement of teeth in complete dentures is a critical aspect of prosthodontics that affects both the function and aesthetics of the prosthesis. The following five principal factors must be considered when arranging teeth for complete dentures:

1. Position of the Arch

  • Definition: The position of the arch refers to the spatial relationship of the maxillary and mandibular dental arches.
  • Considerations:
    • The relationship between the arches should be established based on the patient's occlusal plane and the anatomical landmarks of the residual ridges.
    • Proper positioning ensures that the dentures fit well and function effectively during mastication and speech.
    • The arch position also influences the overall balance and stability of the denture.

2. Contour of the Arch

  • Definition: The contour of the arch refers to the shape and curvature of the dental arch.
  • Considerations:
    • The contour should mimic the natural curvature of the dental arch to provide a comfortable fit and proper occlusion.
    • The arch contour affects the positioning of the teeth, ensuring that they align properly with the opposing arch.
    • A well-contoured arch enhances the esthetics and function of the denture, allowing for effective chewing and speaking.

3. Orientation of the Plane

  • Definition: The orientation of the plane refers to the angulation of the occlusal plane in relation to the horizontal and vertical planes.
  • Considerations:
    • The occlusal plane should be oriented to facilitate proper occlusion and function, taking into account the patient's facial features and anatomical landmarks.
    • The orientation affects the alignment of the teeth and their relationship to the surrounding soft tissues.
    • Proper orientation helps in achieving balanced occlusion and minimizes the risk of denture displacement during function.

4. Inclination of Occlusion

  • Definition: The inclination of occlusion refers to the angulation of the occlusal surfaces of the teeth in relation to the vertical axis.
  • Considerations:
    • The inclination should be designed to allow for proper interdigitation of the teeth during occlusion.
    • It influences the distribution of occlusal forces and the overall stability of the denture.
    • The inclination of occlusion should be adjusted based on the patient's functional needs and the type of occlusion being utilized (e.g., balanced, monoplane, or lingualized).

5. Positioning for Esthetics

  • Definition: Positioning for esthetics involves arranging the teeth in a way that enhances the patient's facial appearance and smile.
  • Considerations:
    • The arrangement should consider the patient's age, gender, and facial features to create a natural and pleasing appearance.
    • The size, shape, and color of the teeth should be selected to match the patient's natural dentition and facial characteristics.
    • Proper positioning for esthetics not only improves the appearance of the dentures but also boosts the patient's confidence and satisfaction with their prosthesis.

Explore by Exams