Talk to us?

Prosthodontics - NEETMDS- courses
NEET MDS Lessons
Prosthodontics

The mental attitude of patients towards complete dentures plays a significant role in the success of their treatment. Understanding these attitudes can help dental professionals tailor their approach to meet the needs and expectations of their patients. Here are the four primary mental attitudes that patients may exhibit:

1. Philosophical (Ideal Attitude)

  • Characteristics:
    • Accepts the dentist's judgment without question.
    • Exhibits a rational, sensible, calm, and composed disposition.
    • Open to discussing treatment options and understands the importance of oral health.
  • Implications for Treatment:
    • This type of patient is likely to follow the dentist's recommendations and cooperate throughout the treatment process.
    • They are more likely to have realistic expectations and be satisfied with the outcomes.

2. Indifferent

  • Characteristics:
    • Shows little concern for their oral health.
    • Seeks treatment primarily due to pressure from family or friends.
    • Requires additional time and education to understand the importance of dental care.
    • Their attitude can be discouraging to dentists, as they may not fully engage in the treatment process.
  • Implications for Treatment:
    • Dentists may need to invest extra effort in educating these patients about the benefits of complete dentures and the importance of oral health.
    • Building rapport and trust is essential to encourage a more proactive attitude towards treatment.

3. Critical/Exacting

  • Characteristics:
    • Has previously had multiple sets of complete dentures and tends to find fault with everything.
    • Often has high expectations and may be overly critical of the treatment process.
    • May require medical consultation due to previous experiences or health concerns.
  • Implications for Treatment:
    • Dentists should be prepared to address specific concerns and provide detailed explanations about the treatment plan.
    • It is important to manage expectations and ensure that the patient understands the limitations and possibilities of denture treatment.

4. Skeptical/Hysterical

  • Characteristics:
    • Has had negative experiences with previous treatments, leading to doubt and skepticism about the current treatment.
    • Often presents with poor oral health, resorbed ridges, and other unfavorable conditions.
    • May exhibit anxiety or hysteria regarding dental procedures.
  • Implications for Treatment:
    • Building trust and confidence is crucial for these patients. Dentists should take the time to listen to their concerns and provide reassurance.
    • A gentle and empathetic approach is necessary to help alleviate fears and encourage cooperation.
    • It may be beneficial to involve them in the decision-making process to empower them and reduce anxiety.

→ Following rules should be considered to classify partially edentulous arches, based on Kennedy's classification.

Rule 1:

→ Classification should follow, rather than precede extraction, that might alter the original classification.

Rule 2:

→ If 3rd molar is missing and not to be replaced, it is not considered in classification.

Rule 3:

→ If the 3rd molar is present and is to be used as an abutment, it is considered in classification.

Rule 4:

→ If second molar is missing and is not to be replaced, it is not considered in classification.

Rule 5:

→ The most posterior edentulous area or areas always determine the classification.

Rule 6:

→ Edentulous areas other than those, which determine the classification are referred as modification spaces and are designated by their number.

Rule 7:

→ The extent of modification is not considered, only the number of additional edentulous areas are taken into consideration (i.e. no. of teeth missing in modification spaces are not considered, only no. of additional edentulous spaces are considered).

Rule 8:

→ There can be no modification areas in class IV.

Bevels are the angulation which is made by 2 surfaces of a prepared tooth which is other than 90 degrees. Bevels are given at various angles depending on the type of material used for restoration and the purpose the material serves.

Any abrupt incline between the 2 surfaces of a prepared tooth or between the cavity wall and the Cavo surface margins in the prepared cavity

Bevels are the variations which are created during tooth preparation or cavity preparation to help in increased retention and to prevent marginal leakage.
It is seen that in Bevels Occlusal cavosurface margin needs to be 40 degrees which seals and protects enamel margins from leakage and the Gingival Cavo surface margin should be 30 degrees to remove the unsupported enamel rods and produce a sliding fit or lap joint useful in burnishing gold.

bevels
Types or Classification of Bevels based on the Surface they are placed on:

Classification of Bevels based on the two factors – Based on the shape and tissue surface involved and Based on the surface they are placed on –

Based on the shape and tissue surface involved:

1. Partial or Ultra short bevel
2. Short Bevel
3. Long Bevel
4. Full Bevel
5. Counter Bevel
6. Reverse / Minnesota Bevel

Partial or Ultra Short Bevel:


Beveling which involves less than 2/3rd of the Enamel thickness. This is not used in Cast restorations except to trim unsupported enamel rods from the cavity borders.

Short Bevel:

Entire enamel wall is included in this type of Bevel without involving the Dentin. This bevel is used mostly with Class I alloys specially for type 1 and 2. It is used in Cast Gold restoration

Long Bevel:

Entire Enamel and 1/2 Dentin is included in the Bevel preparation. Long Bevel is most frequently used bevel for the first 3 classes of Cast metals. Internal boxed- up resistance and retention features of the preparation are preserved with Long Bevel.

Full Bevel:

Complete Enamel and Dentinal walls of the cavity wall or floor are included in this Bevel. It is well reproduced by all four classes of cast alloys, internal resistance and retention features are lost in full bevel. Its use is avoided except in cases where it is impossible to use any other form of bevel .

Counter Bevel:

It is used only when capping cusps to protect and support them, opposite to an axial cavity wall , on the facial or lingual surface of the tooth, which will have a gingival inclination facially or lingually.

There is another type of Bevel called the Minnesota Bevel or the Reverse Bevel, this bevel as the name suggest is opposite to what the normal bevel is and it is mainly used to improve retention in any cavity preparation

If we do not use functional Cusp Bevel –

1. It Can cause a thin area or perforation of the restoration borders
2. May result in over contouring and poor occlusion
3. Over inclination of the buccal surface will destroy excessive tooth structure reducing retention

Based on the surface they are placed on:

1. Gingival bevel
2. Hollow ground bevel
3. Occlusal bevel or Functional cusp bevel

Gingival bevel:

1. Removal of Unsupported Enamel Rods.
2. Bevel results in 30° angle at the gingival margin that is burnishable because of its angular design.
3. A lap sliding fit is produced at the gingival margin which help in improving the fit of casting in this region.
4. Inlay preparations include of two types of bevel Occlusal bevel Gingival bevel

Hollow Ground (concave) Bevel: Hollow ground bevel allows more space for bulk of cast metal, a design feature needed in special preparations to improve material’s castability retention and better resistance to stresses. These bevels are ideal for class IV and V cast materials. This is actually an exaggerated chamfer or a concave beveled shoulder which involves teeth greater than chamfer and less than a beveled shoulder. The buccal slopes of the lingual cusps and the lingual slope of the buccal cusps should be hollow ground to a depth of at least 1 mm.

Occlusal Bevel:

1. Bevels satisfy the requirements for ideal cavity walls.
2. They are the flexible extensions of a cavity preparation , allowing the inclusion of surface defects , supplementary grooves , or other areas on the tooth surface.
3. Bevels require minimum tooth involvement and do not sacrifice the resistance and retention for the restoration
4. Bevels create obtuse-angled marginal tooth structure, which is bulkiest and the strongest configuration of any marginal tooth anatomy, and produce an acute angled marginal cast alloy substance which allows smooth burnishing for alloy.

Functional cusp Bevel:

An integral part of occlusal reduction is the functional cusp bevel. A wide bevel placed on the functional cusp provides space for an adequate bulk of metal in an area of heavy occlusal contact.

The clinical implications of an edentulous stomatognathic system are considered under the following factors:

(1) modi?cations in areas of support .
(2) functional and parafunctional considerations.
(3) changes in morphologic face height, and temporomandibular joint (TMJ).
(4) cosmetic changes and adaptive responses

Support mechanism for complete dentures

Mucosal support and masticatory loads

- The area of mucosa available to receive the load from complete dentures is limited when compared with the corresponding areas of support available for natural dentitions.

- The mean denture bearing area to be 22.96 cm2 in the edentulous maxillae and approximately 12.25 cm2 in an edentulous mandible

- In fact, any disturbance of the normal metabolic processes may lower the upper limit of mucosal tolerance and initiate in?ammation

Residual ridge

The residual ridge consists of denture-bearing mucosa, the submucosa and periosteum, and the underlying residual alveolar bone.

The alveolar bone supporting natural teeth receives tensile loads through a large area of periodontal ligament, whereas the edentulous residual ridge receives vertical, diagonal, and horizontal loads applied by a denture with a surface area much smaller than the total area of the periodontal ligaments of all the natural teeth that had been present.

There are two physical factors involved in denture retention that are under the control of the dentist

- The maximal extension of the denture base
- maximal intimate contact of the denture base and its basal seat

 - The buccinator, the orbicularis oris, and the intrinsic and extrinsic muscles of the tongue are the key muscles that the dentist harnesses to achieve this objective by means of impression techniques.
 - The design of the labial buccal and lingual polished surface of the denture and the form of the dental arch are considered in balancing the forces generated by the tongue and perioral musculature.

Function: mastication and other mandibular movements

Mastication consists of a rhythmic separation and apposition of the jaws and involves biophysical and biochemical processes, including the use of the lips, teeth, cheeks, tongue, palate, and all the oral structures to prepare food for swallowing.

- The maximal bite force in denture wearers is ?ve to six times less than that in dentulous individuals.

- The pronounced differences between persons with natural teeth and patients with complete dentures are conspicuous in this functional context:

(1) the mucosal mechanism of support as opposed to support by the periodontium ;

(2) the movements of the dentures during mastication;

(3) the progressive changes in maxillomandibular relations and the eventual migration of dentures

(4) the different physical stimuli to the sensor motor systems.

Parafunctional considerations

- Parafunctional habits involving repeated or sustained occlusion of the teeth can be harmful to the teeth or other components of the masticatory system.

- Teeth clenching is common and is a frequent cause of the complaint of soreness of the denture-bearing mucosa.

- In the denture wearer, parafunctional habits can cause additional loading on the denture-bearing tissues

Force generated during mastication and parafunction

Functional (Mastication)

Direction -> Mainly vertical

Duration and magnitude -> Intermittent and light diurnal only

Parafunction

Direction -> Frequently horizontalas well as vertical

Duration and magnitude -> Prolonged, possibly excessive Both diurnal and nocturnal

Changes in morphology (face height), occlusion, and the TMJs

The reduction of the residual ridges under complete dentures and the accompanying reduction in vertical dimension of occlusion tend to cause a reduction in the total face height and a resultant mandibular prognathism.

In complete denture wearers, the mean reduction in height of the mandibular residual alveolar ridge measured in the anterior region may be approximately four times greater than the mean reduction occurring in the maxillary residual alveolar process

Occlusion

- In complete denture prosthodontics, the position of planned maximum intercuspation of teeth is established to coincide with the patient’s centric relation.

-The coincidence of centric relation and centric occlusion is consequently referred to as centric relation occlusion (CRG).

- Centric relation at the established vertical dimension has potential for change. This change is brought about by alterations indenture-supporting tissues and facial height, as well as by morphological changes in the TMJs.

TMJ changes

impaired dental ef?ciency resulting from partial tooth loss and absence of or incorrect prosthodontic treatment can in?uence the outcome of temporomandibular disorders.

Aesthetic, behavioral, and adaptive response

Aesthetic changes associated with the edentulous state.

- Deepening of nasolabial groove

- Loss of labiodentals angle

- Narrowing of lips

- Increase in columellae philtral angle

-  Prognathic appearance

Understanding the anatomical considerations for upper (maxillary) and lower (mandibular) dentures is crucial for successful denture fabrication and fitting. Proper knowledge of stress-bearing areas, retentive areas, and relief areas helps in achieving optimal retention, stability, and comfort for the patient.

Maxilla

Stress Bearing Areas

  • Primary Stress Bearing Area:

    • Residual Alveolar Ridge: The primary area where the forces of mastication are transmitted.
  • Secondary Stress Bearing Areas:

    • Rugae: The folds in the anterior hard palate that provide additional support.
    • Anterior Hard Palate: The bony part of the roof of the mouth.
    • Maxillary Tuberosity: The rounded area at the back of the maxilla that aids in support.
  • Tertiary Stress Bearing Area and Secondary Retentive Area:

    • Posteriolateral Part of Hard Palate: Provides additional support and retention.

Relieving Areas

  • Incisive Papilla: A small elevation located behind the maxillary central incisors; important to relieve pressure.
  • Mid Palatine Raphe: The midline ridge of the hard palate; should be relieved to avoid discomfort.
  • Cuspid Eminence: The bony prominence associated with the canine teeth; requires relief.
  • Fovea Palatine: Small depressions located posterior to the hard palate; should be considered for relief.

Primary Retentive Area

  • Posterior Palatal Seal Area: The area at the posterior border of the maxillary denture that aids in retention by creating a seal.

Mandible

Stress Bearing Areas

  • Primary Stress Bearing Area:

    • Buccal Shelf Area: The area between the residual ridge and the buccal vestibule; provides significant support.
  • Secondary Stress Bearing Area:

    • Slopes of Edentulous Ridge: The inclined surfaces of the residual ridge that can bear some stress.

Retentive Areas

  • Primary Retentive and Primary Peripheral Seal Area:

    • Retromolar Pad: The area behind the last molar that provides retention and support.
  • Secondary Peripheral Seal Area:

    • Anterior Lingual Border: The area along the anterior border of the lingual vestibule that aids in retention.

Relief Areas

  • Crest of Residual Ridge: The top of the ridge should be relieved to prevent pressure sores.
  • Mental Foramen: The opening for the mental nerve; should be avoided to prevent discomfort.
  • Mylohyoid Ridge: The bony ridge along the mandible that may require relief.

Posterior Palatal Seal (PPS)

The posterior palatal seal is critical for ensuring a complete seal, which enhances the retention of the maxillary denture.

Functions of the Posterior Palatal Seal

  • Displacement of Soft Tissues: Slightly displaces the soft tissues at the distal end of the denture to ensure a complete seal.
  • Prevention of Food Ingress: Prevents food and saliva from entering beneath the denture base.
  • Control of Impression Material: Prevents excess impression material from running down the patient's throat.

Vibrating Lines

  • Vibrating Line: An imaginary line that passes from one pterygomaxillary notch to the other, located 2 mm in front of the fovea palatine, always on the soft palate. The distal end of the denture should be positioned 1-2 mm posterior to this line.

  • Anterior Vibrating Line:

    • Located at the junction between the immovable tissues of the hard palate and the slightly movable tissues of the soft palate.
    • Identified by asking the patient to say "ah" in short vigorous bursts or performing the Valsalva maneuver.
    • The line has a cupid bow shape.
  • Posterior Vibrating Line:

    • Located at the junction of the soft palate that shows limited movement and the soft palate that shows marked movement.

Applegate's Classification is a system used to categorize edentulous (toothless) arches in preparation for denture construction. The classification is based on the amount and quality of the remaining alveolar ridge, the relationship of the ridge to the residual ridges, and the presence of undercuts. The system is primarily used in the context of complete denture prosthodontics to determine the best approach for achieving retention, stability, and support for the dentures.

Applegate's Classification for edentulous arches:

1. Class I: The alveolar ridge has a favorable arch form and sufficient height and width to provide adequate support for a complete denture without the need for extensive modifications. This is the ideal scenario for denture construction.

2. Class II: The alveolar ridge has a favorable arch form but lacks the necessary height or width to provide adequate support. This may require the use of denture modifications such as flanges to enhance retention and support.

3. Class III: The ridge lacks both height and width, and there may be undercuts or excessive resorption. In this case, additional procedures such as ridge augmentation or the use of implants might be necessary to improve the foundation for the denture.

4. Class IV: The ridge has an unfavorable arch form, often with significant resorption, and may require extensive surgical procedures or adjuncts like implants to achieve a functional and stable denture.

5. Class V: This is the most severe classification where the patient has no residual alveolar ridge, possibly due to severe resorption, trauma, or surgical removal. In such cases, the creation of a functional and stable denture may be highly challenging and might necessitate advanced surgical procedures and/or the use of alternative prosthetic options like over-dentures with implant support.

It's important to note that this classification is a guide, and individual patient cases may present with a combination of features from different classes or may require customized treatment plans based on unique anatomical and functional requirements.

Kennedy's Classification is a system used in dentistry to categorize the edentulous spaces (areas without teeth) in the mouth of a patient who is fully or partially edentulous. This classification system helps in planning the treatment, designing the dentures, and predicting the outcomes of denture therapy. It was developed by Dr. Edward Kennedy in 1925 and is widely used by dental professionals.

The classification is based on the relationship between the remaining teeth, the residual alveolar ridge, and the movable tissues of the oral cavity. It is particularly useful for patients who are wearing or will be wearing complete or partial dentures.

There are four main classes of Kennedy's Classification:

1. Class I: In this class, the patient has a bilateral edentulous area with no remaining teeth on either side of the arch. This means that the patient has a full denture on the upper and lower jaws with no natural tooth support.

2. Class II: The patient has a unilateral edentulous area with natural teeth remaining only on one side of the arch. This could be either the upper or lower jaw. The edentulous side has a complete denture that is supported by the teeth on the opposite side and the buccal (cheek) and lingual (tongue) tissues.

3. Class III: There is a unilateral edentulous area with natural teeth remaining on both sides of the arch, but the edentulous area does not include the anterior (front) teeth. This means the patient has a partial denture on one side of the arch, with the rest of the teeth acting as support for the denture.

4. Class IV: The patient has a unilateral edentulous area with natural teeth remaining only on the anterior region of the edentulous side. The posterior (back) section of the same side is missing, and there may or may not be teeth on the opposite side. This situation requires careful consideration for the design of the partial denture to ensure stability and retention.

Each class is further divided into subcategories (A, B, and C) to account for variations in the amount of remaining bone support and the presence or absence of undercuts, which are areas where the bone curves inward and can affect the stability of the denture.

- Class I (A, B, C): Variations in the amount of bone support and presence of undercuts in the fully edentulous arches.
- Class II (A, B, C): Variations in the amount of bone support and presence of undercuts in the edentulous area with natural teeth on the opposite side.
- Class III (A, B, C): Variations in the amount of bone support and presence of undercuts in the edentulous area with natural teeth on the same side, but not in the anterior region.
- Class IV (A, B, C): Variations in the amount of bone support and presence of undercuts in the edentulous area with natural teeth remaining only in the anterior region of the edentulous side.

Understanding a patient's Kennedy's Classification helps dentists and dental technicians to create well-fitting and functional dentures, which are crucial for the patient's comfort, speech, chewing ability, and overall oral health.

Explore by Exams