Talk to us?

Prosthodontics - NEETMDS- courses
NEET MDS Lessons
Prosthodontics

Concepts Proposed to Attain Balanced Occlusion

Balanced occlusion is a critical aspect of complete denture design, ensuring stability and function during mastication and speech. Various concepts have been proposed over the years to achieve balanced occlusion, each contributing unique insights into the arrangement of artificial teeth. Below are the key concepts:

I. Concepts for Achieving Balanced Occlusion

1. Gysi's Concept (1914)

  • Overview: Gysi suggested that arranging 33° anatomic teeth could enhance the stability of dentures.
  • Key Features:
    • The use of anatomic teeth allows for better adaptation to various movements of the articulator.
    • This arrangement aims to provide stability during functional movements.

2. French's Concept (1954)

  • Overview: French proposed lowering the lower occlusal plane to increase the stability of dentures while achieving balanced occlusion.
  • Key Features:
    • Suggested inclinations for upper teeth:
      • Upper first premolars: 5° inclination
      • Upper second premolars: 10° inclination
      • Upper molars: 15° inclination
    • This arrangement aims to enhance the occlusal relationship and stability of the denture.

3. Sear's Concept

  • Overview: Sears proposed balanced occlusion for non-anatomical teeth.
  • Key Features:
    • Utilized posterior balancing ramps or an occlusal plane that curves anteroposteriorly and laterally.
    • This design helps maintain occlusal balance during functional movements.

4. Pleasure's Concept

  • Overview: Pleasure introduced the concept of the "Pleasure Curve" or the posterior reverse lateral curve.
  • Key Features:
    • This curve aids in achieving balanced occlusion by allowing for better distribution of occlusal forces.
    • It enhances the functional relationship between the upper and lower dentures.

5. Frush's Concept

  • Overview: Frush advised arranging teeth in a one-dimensional contact relationship.
  • Key Features:
    • This arrangement should be reshaped during the try-in phase to obtain balanced occlusion.
    • Emphasizes the importance of adjusting the occlusal surfaces for optimal contact.

6. Hanau's Quint

  • Overview: Rudolph L. Hanau proposed nine factors that govern the articulation of artificial teeth, known as the laws of balanced articulation.
  • Nine Factors:
    • Horizontal condylar inclination
    • Protrusive incisal guidance
    • Relative cusp height
    • Compensating curve
    • Plane of orientation
    • Buccolingual inclination of tooth axis
    • Sagittal condylar pathway
    • Sagittal incisal guidance
    • Tooth alignment
  • Condensation: Hanau later condensed these nine factors into five key principles for practical application.

7. Trapozzano's Concept of Occlusion

  • Overview: Trapozzano reviewed and simplified Hanau's quint and proposed his triad of occlusion.
  • Key Features:
    • Focuses on the essential elements of occlusion to streamline the process of achieving balanced occlusion.

II. Monoplane or Non-Balanced Occlusion

Monoplane occlusion is characterized by an arrangement of teeth that serves a specific purpose. It includes the following concepts:

  • Spherical Theory: Proposes that the occlusal surfaces should be arranged in a spherical configuration to facilitate movement.
  • Organic Occlusion: Focuses on the natural relationships and movements of the jaw.
  • Occlusal Balancing Ramps for Protrusive Balance: Utilizes ramps to maintain balance during protrusive movements.
  • Transographics: A method of analyzing occlusal relationships and movements.

Sears' Occlusal Pivot Theory

  • Overview: Sears also proposed the occlusal pivot theory for monoplane or balanced occlusion, emphasizing the importance of a pivot point for functional movements.

III. Lingualized Occlusion

  • Overview: Proposed by Gysi, lingualized occlusion involves positioning the maxillary posterior teeth to occlude with the mandibular posterior teeth, enhancing stability and function.
  • Key Features:
    • The maxillary teeth are positioned more centrally, while the mandibular teeth are positioned buccally.
    • This arrangement allows for better functional balance and esthetics.

The clinical implications of an edentulous stomatognathic system are considered under the following factors:

(1) modi?cations in areas of support .
(2) functional and parafunctional considerations.
(3) changes in morphologic face height, and temporomandibular joint (TMJ).
(4) cosmetic changes and adaptive responses

Support mechanism for complete dentures

Mucosal support and masticatory loads

- The area of mucosa available to receive the load from complete dentures is limited when compared with the corresponding areas of support available for natural dentitions.

- The mean denture bearing area to be 22.96 cm2 in the edentulous maxillae and approximately 12.25 cm2 in an edentulous mandible

- In fact, any disturbance of the normal metabolic processes may lower the upper limit of mucosal tolerance and initiate in?ammation

Residual ridge

The residual ridge consists of denture-bearing mucosa, the submucosa and periosteum, and the underlying residual alveolar bone.

The alveolar bone supporting natural teeth receives tensile loads through a large area of periodontal ligament, whereas the edentulous residual ridge receives vertical, diagonal, and horizontal loads applied by a denture with a surface area much smaller than the total area of the periodontal ligaments of all the natural teeth that had been present.

There are two physical factors involved in denture retention that are under the control of the dentist

- The maximal extension of the denture base
- maximal intimate contact of the denture base and its basal seat

 - The buccinator, the orbicularis oris, and the intrinsic and extrinsic muscles of the tongue are the key muscles that the dentist harnesses to achieve this objective by means of impression techniques.
 - The design of the labial buccal and lingual polished surface of the denture and the form of the dental arch are considered in balancing the forces generated by the tongue and perioral musculature.

Function: mastication and other mandibular movements

Mastication consists of a rhythmic separation and apposition of the jaws and involves biophysical and biochemical processes, including the use of the lips, teeth, cheeks, tongue, palate, and all the oral structures to prepare food for swallowing.

- The maximal bite force in denture wearers is ?ve to six times less than that in dentulous individuals.

- The pronounced differences between persons with natural teeth and patients with complete dentures are conspicuous in this functional context:

(1) the mucosal mechanism of support as opposed to support by the periodontium ;

(2) the movements of the dentures during mastication;

(3) the progressive changes in maxillomandibular relations and the eventual migration of dentures

(4) the different physical stimuli to the sensor motor systems.

Parafunctional considerations

- Parafunctional habits involving repeated or sustained occlusion of the teeth can be harmful to the teeth or other components of the masticatory system.

- Teeth clenching is common and is a frequent cause of the complaint of soreness of the denture-bearing mucosa.

- In the denture wearer, parafunctional habits can cause additional loading on the denture-bearing tissues

Force generated during mastication and parafunction

Functional (Mastication)

Direction -> Mainly vertical

Duration and magnitude -> Intermittent and light diurnal only

Parafunction

Direction -> Frequently horizontalas well as vertical

Duration and magnitude -> Prolonged, possibly excessive Both diurnal and nocturnal

Changes in morphology (face height), occlusion, and the TMJs

The reduction of the residual ridges under complete dentures and the accompanying reduction in vertical dimension of occlusion tend to cause a reduction in the total face height and a resultant mandibular prognathism.

In complete denture wearers, the mean reduction in height of the mandibular residual alveolar ridge measured in the anterior region may be approximately four times greater than the mean reduction occurring in the maxillary residual alveolar process

Occlusion

- In complete denture prosthodontics, the position of planned maximum intercuspation of teeth is established to coincide with the patient’s centric relation.

-The coincidence of centric relation and centric occlusion is consequently referred to as centric relation occlusion (CRG).

- Centric relation at the established vertical dimension has potential for change. This change is brought about by alterations indenture-supporting tissues and facial height, as well as by morphological changes in the TMJs.

TMJ changes

impaired dental ef?ciency resulting from partial tooth loss and absence of or incorrect prosthodontic treatment can in?uence the outcome of temporomandibular disorders.

Aesthetic, behavioral, and adaptive response

Aesthetic changes associated with the edentulous state.

- Deepening of nasolabial groove

- Loss of labiodentals angle

- Narrowing of lips

- Increase in columellae philtral angle

-  Prognathic appearance

Arrangement of Teeth in Complete Dentures

The arrangement of teeth in complete dentures is a critical aspect of prosthodontics that affects both the function and aesthetics of the prosthesis. The following five principal factors must be considered when arranging teeth for complete dentures:

1. Position of the Arch

  • Definition: The position of the arch refers to the spatial relationship of the maxillary and mandibular dental arches.
  • Considerations:
    • The relationship between the arches should be established based on the patient's occlusal plane and the anatomical landmarks of the residual ridges.
    • Proper positioning ensures that the dentures fit well and function effectively during mastication and speech.
    • The arch position also influences the overall balance and stability of the denture.

2. Contour of the Arch

  • Definition: The contour of the arch refers to the shape and curvature of the dental arch.
  • Considerations:
    • The contour should mimic the natural curvature of the dental arch to provide a comfortable fit and proper occlusion.
    • The arch contour affects the positioning of the teeth, ensuring that they align properly with the opposing arch.
    • A well-contoured arch enhances the esthetics and function of the denture, allowing for effective chewing and speaking.

3. Orientation of the Plane

  • Definition: The orientation of the plane refers to the angulation of the occlusal plane in relation to the horizontal and vertical planes.
  • Considerations:
    • The occlusal plane should be oriented to facilitate proper occlusion and function, taking into account the patient's facial features and anatomical landmarks.
    • The orientation affects the alignment of the teeth and their relationship to the surrounding soft tissues.
    • Proper orientation helps in achieving balanced occlusion and minimizes the risk of denture displacement during function.

4. Inclination of Occlusion

  • Definition: The inclination of occlusion refers to the angulation of the occlusal surfaces of the teeth in relation to the vertical axis.
  • Considerations:
    • The inclination should be designed to allow for proper interdigitation of the teeth during occlusion.
    • It influences the distribution of occlusal forces and the overall stability of the denture.
    • The inclination of occlusion should be adjusted based on the patient's functional needs and the type of occlusion being utilized (e.g., balanced, monoplane, or lingualized).

5. Positioning for Esthetics

  • Definition: Positioning for esthetics involves arranging the teeth in a way that enhances the patient's facial appearance and smile.
  • Considerations:
    • The arrangement should consider the patient's age, gender, and facial features to create a natural and pleasing appearance.
    • The size, shape, and color of the teeth should be selected to match the patient's natural dentition and facial characteristics.
    • Proper positioning for esthetics not only improves the appearance of the dentures but also boosts the patient's confidence and satisfaction with their prosthesis.

The mental attitude of patients towards complete dentures plays a significant role in the success of their treatment. Understanding these attitudes can help dental professionals tailor their approach to meet the needs and expectations of their patients. Here are the four primary mental attitudes that patients may exhibit:

1. Philosophical (Ideal Attitude)

  • Characteristics:
    • Accepts the dentist's judgment without question.
    • Exhibits a rational, sensible, calm, and composed disposition.
    • Open to discussing treatment options and understands the importance of oral health.
  • Implications for Treatment:
    • This type of patient is likely to follow the dentist's recommendations and cooperate throughout the treatment process.
    • They are more likely to have realistic expectations and be satisfied with the outcomes.

2. Indifferent

  • Characteristics:
    • Shows little concern for their oral health.
    • Seeks treatment primarily due to pressure from family or friends.
    • Requires additional time and education to understand the importance of dental care.
    • Their attitude can be discouraging to dentists, as they may not fully engage in the treatment process.
  • Implications for Treatment:
    • Dentists may need to invest extra effort in educating these patients about the benefits of complete dentures and the importance of oral health.
    • Building rapport and trust is essential to encourage a more proactive attitude towards treatment.

3. Critical/Exacting

  • Characteristics:
    • Has previously had multiple sets of complete dentures and tends to find fault with everything.
    • Often has high expectations and may be overly critical of the treatment process.
    • May require medical consultation due to previous experiences or health concerns.
  • Implications for Treatment:
    • Dentists should be prepared to address specific concerns and provide detailed explanations about the treatment plan.
    • It is important to manage expectations and ensure that the patient understands the limitations and possibilities of denture treatment.

4. Skeptical/Hysterical

  • Characteristics:
    • Has had negative experiences with previous treatments, leading to doubt and skepticism about the current treatment.
    • Often presents with poor oral health, resorbed ridges, and other unfavorable conditions.
    • May exhibit anxiety or hysteria regarding dental procedures.
  • Implications for Treatment:
    • Building trust and confidence is crucial for these patients. Dentists should take the time to listen to their concerns and provide reassurance.
    • A gentle and empathetic approach is necessary to help alleviate fears and encourage cooperation.
    • It may be beneficial to involve them in the decision-making process to empower them and reduce anxiety.

Impression making is a critical step in prosthodontics and orthodontics, as it captures the details of the oral cavity for the fabrication of dental prostheses. There are several techniques for making impressions, each with its own principles and applications. Here, we will discuss three primary impression-making techniques: Mucostatic, Mucocompressive, and Selective Pressure Impression Techniques.

1. Mucostatic or Passive Impression Technique

  • Proposed by: Richardson and Henry Page
  • Materials Used: Plaster of Paris and Alginate
  • Key Features:
    • Relaxed Condition: Records the oral mucous membrane and jaws in a normal, relaxed condition.
    • Tray Design: Utilizes an oversized tray to accommodate the relaxed tissues.
    • Tissue Contact: Achieves intimate contact of the tissues with the denture base, which enhances stability.
    • Peripheral Seal: This technique has a poor peripheral seal, which can affect retention.
    • Outcome: The resulting denture will have good stability but poor retention due to the lack of a proper seal.

2. Mucocompressive Impression Technique

  • Proposed by: Carole Jones
  • Materials Used: Impression compound and Zinc Oxide Eugenol (ZoE)
  • Key Features:
    • Functional Recording: Records the oral tissues in a functional and displaced form, capturing the active state of the tissues.
    • Retention: Provides good retention due to the compression of the tissues during the impression process.
    • Displacement Issues: Dentures made using this technique may tend to get displaced due to tissue rebound when the tissues return to their resting state after the impression is taken.

3. Selective Pressure Impression Technique

  • Proposed by: Boucher
  • Materials Used: Special tray with Zinc Oxide Eugenol (ZoE) wash impression
  • Key Features:
    • Stress Distribution: Loads acting on the denture are transmitted to the stress-bearing areas of the oral tissues.
    • Tray Design: A special tray is designed such that the tissues contacted by the tray are recorded under pressure, while the tissues not contacted by the tray are recorded in a state of rest.
    • Balanced Recording: This technique allows for a more balanced impression, capturing both the functional and relaxed states of the oral tissues.

→ Following rules should be considered to classify partially edentulous arches, based on Kennedy's classification.

Rule 1:

→ Classification should follow, rather than precede extraction, that might alter the original classification.

Rule 2:

→ If 3rd molar is missing and not to be replaced, it is not considered in classification.

Rule 3:

→ If the 3rd molar is present and is to be used as an abutment, it is considered in classification.

Rule 4:

→ If second molar is missing and is not to be replaced, it is not considered in classification.

Rule 5:

→ The most posterior edentulous area or areas always determine the classification.

Rule 6:

→ Edentulous areas other than those, which determine the classification are referred as modification spaces and are designated by their number.

Rule 7:

→ The extent of modification is not considered, only the number of additional edentulous areas are taken into consideration (i.e. no. of teeth missing in modification spaces are not considered, only no. of additional edentulous spaces are considered).

Rule 8:

→ There can be no modification areas in class IV.

LIMITING STRUCTURES

A) Labial, lingual & buccal frenum

- It is fibrous band extending from the labial aspect of the residual alveolar ridge to the lip containing a band of the fibrous connective tissue the that helps in attachment of the orbicularis oris muscle.
- It is quite sensitive hence the denture should have an appropriate labial notch.
- The fibers of buccinator are attached to the buccal frenum.
- Should be relieved to prevent displacement of the denture during function.
- The lingual frenum relief should be provided in the anterior portion of the lingual flange. 
- This anterior portion of the lingual flange called sub-lingual crescent area.
- The lingual notch of the denture should be well adapted otherwise it will affect the denture stability.
 
B) Labial & buccal vestibule
 
-     The labial sulcus runs from the labial frenum to the buccal frenum on each side.
-     Mentalis muscle is quite active in this region.
-     The buccal sulcus extends posteriorly from the buccal frenum to outside back corner of the retromolar region.
-     Area maximization can be safely done here as because the fibers of the buccinator runs parallel to the border and hence displacing action due to buccinator during its contraction is slight.

-     The impression is the widest in this region.
 
C) Alveololingual sulcus

-     Between lingual frenum to retromylohyoid curtain.
-     Overextension causes soreness and instability.

It can be divided into three parts:
i) Anterior part :
-     From lingual frenum to mylohyoid ridge
-     The shallowest portion(least height) of the lingual flange
ii) Middle region :
-     From the premylohyoid fossa to the the distal end of the mylohyoid region
iii) Posterior portion :
-     From the end of the mylohyoid ridge end to the retromylohyoid curtain
-     Provides for a valuable undercut area so important retention
-     Overextension causes soreness and instability
-     Proper recording gives typical S –form of the lingual flange
 
D) Retromolar pad
-     Pear-shaped triangular soft pad of tissue at the distal end of the lower ridge is referred to as the retromolar pad.
-     It is an important structure, which forms the posterior seal of the mandibular denture.
-     The denture base should extend up to 2/3rd of the retromolar pad triangle.

E) Pterygomandibular raphe
 
 SUPPORTING STRUCTURES

A) Primary stress bearing area / Supporting area
 
1.    Buccal shelf area
-     Extends from buccal frenum to retromolar pad.
-     Between external oblique ridge and crest of alveolar ridge.

Its boundaries are:
1.    Medially the crest of the ridge
2.    Laterally the external oblique ridge
3.    Distally the retromolar pad
4.    Mesially the buccal frenum
The width of this area increases as the alveolar resorption continues.
 
B) Secondary stress bearing area / Supporting area
 
1.    Residual alveolar ridge
-     Buccal and lingual slopes are secondary stress bearing areas.
 
RELIEF AREAS
A) Mylohyoid ridge
 
-     Attachment for the mylohyoid muscle.
-     Running along the lingual surface of the mandible.
-     Anteriorly: the ridge lies close to the inferior border of the mandible.
-     Posteriorly it lies close to the residual ridge.
-     Covered by the thin mucosa which may be traumatized by denture base hence it should be relieved.
-     The extension of the lingual flange is to be beyond the palpable position of the mylohyoid ridge but not in the undercut.
 
B) Mental foramen
-     Lies on the external surface of the mandible in between the 1st and the 2nd premolar region.
-     It should be relieved specially in case it lies close to the residual alveolar ridge due to ridge resorption to prevent parasthesia.
 
C) Genial tubercle
-     Area of muscle attachment (Genioglossus and Geniohyoid).
-     Lies away from the crest of the ridge.
-     Prominent in resorbed ridges therefore adequate relief to be provided.
 
D) Torus mandibularis
-     Abnormal bony prominence.
-     Bilaterally on the lingual side near the premolar area.
-     Covered by thin mucosa so it should be relieved

Explore by Exams