NEET MDS Lessons
Periodontology
Gingivitis
Gingivitis is an inflammatory condition of the gingiva that can progress through several distinct stages. Understanding these stages is crucial for dental professionals in diagnosing and managing periodontal disease effectively. This lecture will outline the four stages of gingivitis, highlighting the key pathological changes that occur at each stage.
I. Initial Lesion
- Characteristics:
- Increased Permeability: The microvascular bed in the gingival tissues becomes more permeable, allowing for the passage of fluids and immune cells.
- Increased GCF Flow: There is an increase in the flow of gingival crevicular fluid (GCF), which is indicative of inflammation and immune response.
- PMN Cell Migration: The migration of
polymorphonuclear leukocytes (PMNs) is facilitated by various adhesion
molecules, including:
- Intercellular Cell Adhesion Molecule 1 (ICAM-1)
- E-selectin (ELAM-1) in the dentogingival vasculature.
- Clinical Implications: This stage marks the beginning of the inflammatory response, where the body attempts to combat the initial bacterial insult.
II. Early Lesion
-
Characteristics:
- Leukocyte Infiltration: There is significant infiltration of leukocytes, particularly lymphocytes, into the connective tissue of the junctional epithelium.
- Fibroblast Degeneration: Several fibroblasts within the lesion exhibit signs of degeneration, indicating tissue damage.
- Proliferation of Basal Cells: The basal cells of the junctional and sulcular epithelium begin to proliferate, which may be a response to the inflammatory process.
-
Clinical Implications: This stage represents a transition from initial inflammation to more pronounced tissue changes, with the potential for further progression if not managed.
III. Established Lesion
-
Characteristics:
- Predominance of Plasma Cells and B Lymphocytes: There is a marked increase in plasma cells and B lymphocytes, indicating a more advanced immune response.
- Increased Collagenolytic Activity: The activity of collagen-degrading enzymes increases, leading to the breakdown of collagen fibers in the connective tissue.
- B Cell Subclasses: The B cells present in the established lesion are predominantly of the IgG1 and IgG3 subclasses, which are important for the immune response.
-
Clinical Implications: This stage is characterized by chronic inflammation, and if left untreated, it can lead to further tissue destruction and the transition to advanced lesions.
IV. Advanced Lesion
-
Characteristics:
- Loss of Connective Tissue Attachment: There is significant loss of connective tissue attachment to the teeth, which can lead to periodontal pocket formation.
- Alveolar Bone Loss: Extensive damage occurs to the alveolar bone, contributing to the overall loss of periodontal support.
- Extensive Damage to Collagen Fibers: The collagen fibers in the gingival tissues are extensively damaged, further compromising the structural integrity of the gingiva.
- Predominance of Plasma Cells: Plasma cells remain predominant, indicating ongoing immune activity and inflammation.
-
Clinical Implications: This stage represents the transition from gingivitis to periodontitis, where irreversible damage can occur. Early intervention is critical to prevent further progression and loss of periodontal support.
Connective Tissue of the Gingiva and Related Cellular Components
The connective tissue of the gingiva, known as the lamina propria, plays a crucial role in supporting the gingival epithelium and maintaining periodontal health. This lecture will cover the structure of the lamina propria, the types of connective tissue fibers present, the role of Langerhans cells, and the changes observed in the periodontal ligament (PDL) with aging.
Structure of the Lamina Propria
-
Layers of the Lamina Propria:
- The lamina propria consists of two distinct layers:
- Papillary Layer:
- The upper layer that interdigitates with the epithelium, containing finger-like projections that increase the surface area for exchange of nutrients and waste.
- Reticular Layer:
- The deeper layer that provides structural support and contains larger blood vessels and nerves.
- Papillary Layer:
- The lamina propria consists of two distinct layers:
-
Types of Connective Tissue Fibers:
-
The lamina propria contains three main types of connective tissue fibers:
- Collagen Fibers:
- Type I Collagen: Forms the bulk of the lamina propria and provides tensile strength to the gingival fibers, essential for maintaining the integrity of the gingiva.
- Reticular Fibers:
- These fibers provide a supportive network within the connective tissue.
- Elastic Fibers:
- Contribute to the elasticity and flexibility of the gingival tissue.
- Collagen Fibers:
-
Type IV Collagen:
- Found branching between the Type I collagen bundles, it is continuous with the fibers of the basement membrane and the walls of blood vessels.
-
Langerhans Cells
-
Description:
- Langerhans cells are dendritic cells located among keratinocytes at all suprabasal levels of the gingival epithelium.
- They belong to the mononuclear phagocyte system and play a critical role in immune responses.
-
Function:
- Act as antigen-presenting cells for lymphocytes, facilitating the immune reaction.
- Contain specific granules known as Birbeck’s granules and exhibit marked ATP activity.
-
Location:
- Found in the oral epithelium of normal gingiva and in small amounts in the sulcular epithelium.
- Absent from the junctional epithelium of normal gingiva.
Changes in the Periodontal Ligament (PDL) with Aging
- Aging Effects:
- With aging, several changes have been reported in the periodontal
ligament:
- Decreased Numbers of Fibroblasts: This reduction can lead to impaired healing and regeneration of the PDL.
- Irregular Structure: The PDL may exhibit a more irregular structure, paralleling changes in the gingival connective tissues.
- Decreased Organic Matrix Production: This can affect the overall health and function of the PDL.
- Epithelial Cell Rests: There may be a decrease in the number of epithelial cell rests, which are remnants of the Hertwig's epithelial root sheath.
- Increased Amounts of Elastic Fibers: This change may contribute to the altered mechanical properties of the PDL.
- With aging, several changes have been reported in the periodontal
ligament:
Sutures for Periodontal Flaps
Suturing is a critical aspect of periodontal surgery, particularly when managing periodontal flaps. The choice of suture material can significantly influence healing, tissue adaptation, and overall surgical outcomes.
1. Nonabsorbable Sutures
Nonabsorbable sutures are designed to remain in the tissue until they are manually removed. They are often used in situations where long-term support is needed.
A. Types of Nonabsorbable Sutures
-
Silk (Braided)
- Characteristics:
- Excellent handling properties and knot security.
- Provides good tissue approximation.
- Applications: Commonly used in periodontal surgeries due to its ease of use and reliability.
- Characteristics:
-
Nylon (Monofilament) (Ethilon)
- Characteristics:
- Strong and resistant to stretching.
- Less tissue reactivity compared to silk.
- Applications: Ideal for delicate tissues and areas requiring minimal tissue trauma.
- Characteristics:
-
ePTFE (Monofilament) (Gore-Tex)
- Characteristics:
- Biocompatible and non-reactive.
- Excellent tensile strength and flexibility.
- Applications: Often used in guided tissue regeneration procedures and in areas where long-term support is needed.
- Characteristics:
-
Polyester (Braided) (Ethibond)
- Characteristics:
- High tensile strength and good knot security.
- Less pliable than silk.
- Applications: Used in situations requiring strong sutures, such as in flap stabilization.
- Characteristics:
2. Absorbable Sutures
Absorbable sutures are designed to be broken down by the body over time, eliminating the need for removal. They are often used in periodontal surgeries where temporary support is sufficient.
A. Types of Absorbable Sutures
-
Surgical Gut
-
Plain Gut (Monofilament)
- Absorption Time: Approximately 30 days.
- Characteristics: Made from sheep or cow intestines; provides good tensile strength initially but loses strength quickly.
- Applications: Suitable for soft tissue approximation where rapid absorption is desired.
-
Chromic Gut (Monofilament)
- Absorption Time: Approximately 45 to 60 days.
- Characteristics: Treated with chromium salts to delay absorption; retains strength longer than plain gut.
- Applications: Used in areas where a longer healing time is expected.
-
-
Synthetic Absorbable Sutures
-
Polyglycolic Acid (Braided) (Vicryl, Ethicon)
- Absorption Time: Approximately 16 to 20 days.
- Characteristics: Provides good tensile strength and is absorbed predictably.
- Applications: Commonly used in periodontal and oral surgeries due to its handling properties.
-
Dexon (Davis & Geck)
- Characteristics: Similar to Vicryl; made from polyglycolic acid.
- Applications: Used in soft tissue approximation and ligation.
-
Polyglycaprone (Monofilament) (Maxon)
- Absorption Time: Similar to Vicryl.
- Characteristics: Offers excellent tensile strength and is absorbed more slowly than other synthetic options.
- Applications: Ideal for areas requiring longer support during healing.
-
Aggressive Periodontitis (formerly Juvenile Periodontitis)
- Historical Names: Previously referred to as periodontosis, deep cementopathia, diseases of eruption, Gottleib’s diseases, and periodontitis marginalis progressive.
- Risk Factors:
- High frequency of Actinobacillus actinomycetemcomitans.
- Immune defects (functional defects of PMNs and monocytes).
- Autoimmunity and genetic factors.
- Environmental factors, including smoking.
- Clinical Features:
- Vertical loss of alveolar bone around the first molars and incisors, typically beginning around puberty.
- Bone loss patterns often described as "target" or "bull" shaped lesions.
Classification of Cementum According to Schroeder
Cementum is a specialized calcified tissue that covers the roots of teeth and plays a crucial role in periodontal health. According to Schroeder, cementum can be classified into several distinct types based on its cellular composition and structural characteristics. Understanding these classifications is essential for dental professionals in diagnosing and treating periodontal conditions.
Classification of Cementum
-
Acellular Afibrillar Cementum:
- Characteristics:
- Contains neither cells nor collagen fibers.
- Present in the coronal region of the tooth.
- Thickness ranges from 1 µm to 15 µm.
- Function:
- This type of cementum is thought to play a role in the attachment of the gingiva to the tooth surface.
- Characteristics:
-
Acellular Extrinsic Fiber Cementum:
- Characteristics:
- Lacks cells but contains closely packed bundles of Sharpey’s fibers, which are collagen fibers that anchor the cementum to the periodontal ligament.
- Typically found in the cervical third of the roots.
- Thickness ranges from 30 µm to 230 µm.
- Function:
- Provides strong attachment of the periodontal ligament to the tooth, contributing to the stability of the tooth in its socket.
- Characteristics:
-
Cellular Mixed Stratified Cementum:
- Characteristics:
- Contains both extrinsic and intrinsic fibers and may contain cells.
- Found in the apical third of the roots, at the apices, and in furcation areas.
- Thickness ranges from 100 µm to 1000 µm.
- Function:
- This type of cementum is involved in the repair and adaptation of the tooth root, especially in response to functional demands and periodontal disease.
- Characteristics:
-
Cellular Intrinsic Fiber Cementum:
- Characteristics:
- Contains cells but no extrinsic collagen fibers.
- Primarily fills resorption lacunae, which are areas where cementum has been resorbed.
- Function:
- Plays a role in the repair of cementum and may be involved in the response to periodontal disease.
- Characteristics:
-
Intermediate Cementum:
- Characteristics:
- A poorly defined zone located near the cementoenamel junction (CEJ) of certain teeth.
- Appears to contain cellular remnants of the Hertwig's epithelial root sheath (HERS) embedded in a calcified ground substance.
- Function:
- Its exact role is not fully understood, but it may be involved in the transition between enamel and cementum.
- Characteristics:
Clinical Significance
-
Importance of Cementum:
- Understanding the different types of cementum is crucial for diagnosing periodontal diseases and planning treatment strategies.
- The presence of various types of cementum can influence the response of periodontal tissues to disease and trauma.
-
Cementum in Periodontal Disease:
- Changes in the thickness and composition of cementum can occur in response to periodontal disease, affecting tooth stability and attachment.
Gingival crevicular fluid is an inflammatory exudate found in the gingival sulcus. It plays a significant role in periodontal health and disease.
A. Characteristics of GCF
- Glucose Concentration: The glucose concentration in GCF is 3-4 times greater than that in serum, indicating increased metabolic activity in inflamed tissues.
- Protein Content: The total protein content of GCF is much less than that of serum, reflecting its role as an inflammatory exudate.
- Inflammatory Nature: GCF is present in clinically normal sulci due to the constant low-grade inflammation of the gingiva.
B. Drugs Excreted Through GCF
- Tetracyclines and Metronidazole: These antibiotics are known to be excreted through GCF, making them effective for localized periodontal therapy.
C. Collection Methods for GCF
GCF can be collected using various techniques, including:
- Absorbing Paper Strips/Blotter/Periopaper: These strips absorb fluid from the sulcus and are commonly used for GCF collection.
- Twisted Threads: Placing twisted threads around and into the sulcus can help collect GCF.
- Micropipettes: These can be used for precise collection of GCF in research settings.
- Intra-Crevicular Washings: Flushing the sulcus with a saline solution can help collect GCF for analysis.
Dark Field Microscopy in Periodontal Microbiology
Dark field microscopy and phase contrast microscopy are valuable techniques in microbiological studies, particularly in the field of periodontal research. These methods allow for the direct observation of bacteria in plaque samples, providing insights into their morphology and motility. This lecture will discuss the principles of dark field microscopy, its applications in periodontal disease assessment, and its limitations.
Dark Field Microscopy
- Definition: Dark field microscopy is a technique that enhances the contrast of unstained, transparent specimens, allowing for the visualization of live microorganisms in their natural state.
- Principle: The method uses a special condenser that directs light at an angle, creating a dark background against which the specimen appears bright. This allows for the observation of motility and morphology without the need for staining.
Applications in Periodontal Microbiology
-
Alternative to Culture Methods:
- Dark field microscopy has been suggested as a rapid alternative to traditional culture methods for assessing bacterial populations in periodontal plaque samples. It allows for immediate observation of bacteria without the time-consuming process of culturing.
-
Assessment of Morphology and Motility:
- The technique enables direct and rapid assessment of the morphology (shape and structure) and motility (movement) of bacteria present in plaque samples. This information can be crucial for understanding the dynamics of periodontal disease.
-
Indication of Periodontal Disease Status:
- Dark field microscopy has been used to indicate the status of periodontal disease and the effectiveness of maintenance programs. By observing the presence and activity of specific bacteria, clinicians can gain insights into the health of periodontal tissues.
Limitations of Dark Field Microscopy
-
Analysis of Major Periodontal Pathogens:
- While dark field microscopy can visualize motile bacteria, it is important to note that many major periodontal pathogens, such as Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, Bacteroides forsythus, Eikenella corrodens, and Eubacterium species, are motile. However, the technique may not provide detailed information about their specific characteristics or pathogenic potential.
-
Differentiation of Treponema Species:
- Dark field microscopy cannot differentiate between species of Treponema, which is a limitation when identifying specific pathogens associated with periodontal disease. This lack of specificity can hinder the ability to tailor treatment based on the exact microbial profile.
-
Limited Quantitative Analysis:
- While dark field microscopy allows for qualitative observations, it may not provide quantitative data on bacterial populations, which can be important for assessing disease severity and treatment outcomes.