NEET MDS Lessons
Periodontology
Periodontal Fibers
Periodontal fibers play a crucial role in maintaining the integrity of the periodontal ligament and supporting the teeth within the alveolar bone. Understanding the different groups of periodontal fibers is essential for comprehending their functions in periodontal health and disease.
1. Gingivodental Group
- Location:
- Present on the facial, lingual, and interproximal surfaces of the teeth.
- Attachment:
- These fibers are embedded in the cementum just beneath the epithelium at the base of the gingival sulcus.
- Function:
- They help support the gingiva and maintain the position of the gingival margin.
2. Circular Group
- Location:
- These fibers course through the connective tissue of the marginal and interdental gingiva.
- Attachment:
- They encircle the tooth in a ring-like fashion.
- Function:
- The circular fibers help maintain the contour of the gingiva and provide support to the marginal gingiva.
3. Transseptal Group
- Location:
- Located interproximally, these fibers extend between the cementum of adjacent teeth.
- Attachment:
- They lie in the area between the epithelium at the base of the gingival sulcus and the crest of the interdental bone.
- Function:
- The transseptal fibers are primarily responsible for the post-retention relapse of orthodontically positioned teeth.
- They are sometimes classified as principal fibers of the periodontal ligament.
- Collectively, they form the interdental ligament of the arch, providing stability to the interproximal areas.
4. Semicircular Fibers
- Location:
- These fibers attach to the proximal surface of a tooth immediately below the cementoenamel junction (CEJ).
- Attachment:
- They go around the facial or lingual marginal gingiva of the tooth and attach to the other proximal surface of the same tooth.
- Function:
- Semicircular fibers help maintain the position of the tooth and support the gingival tissue around it.
5. Transgingival Fibers
- Location:
- These fibers attach to the proximal surface of one tooth and traverse the interdental space diagonally to attach to the proximal surface of the adjacent tooth.
- Function:
- Transgingival fibers provide support across the interdental space, helping to maintain the position of adjacent teeth and the integrity of the gingival tissue.
Connective Tissue of the Gingiva and Related Cellular Components
The connective tissue of the gingiva, known as the lamina propria, plays a crucial role in supporting the gingival epithelium and maintaining periodontal health. This lecture will cover the structure of the lamina propria, the types of connective tissue fibers present, the role of Langerhans cells, and the changes observed in the periodontal ligament (PDL) with aging.
Structure of the Lamina Propria
-
Layers of the Lamina Propria:
- The lamina propria consists of two distinct layers:
- Papillary Layer:
- The upper layer that interdigitates with the epithelium, containing finger-like projections that increase the surface area for exchange of nutrients and waste.
- Reticular Layer:
- The deeper layer that provides structural support and contains larger blood vessels and nerves.
- Papillary Layer:
- The lamina propria consists of two distinct layers:
-
Types of Connective Tissue Fibers:
-
The lamina propria contains three main types of connective tissue fibers:
- Collagen Fibers:
- Type I Collagen: Forms the bulk of the lamina propria and provides tensile strength to the gingival fibers, essential for maintaining the integrity of the gingiva.
- Reticular Fibers:
- These fibers provide a supportive network within the connective tissue.
- Elastic Fibers:
- Contribute to the elasticity and flexibility of the gingival tissue.
- Collagen Fibers:
-
Type IV Collagen:
- Found branching between the Type I collagen bundles, it is continuous with the fibers of the basement membrane and the walls of blood vessels.
-
Langerhans Cells
-
Description:
- Langerhans cells are dendritic cells located among keratinocytes at all suprabasal levels of the gingival epithelium.
- They belong to the mononuclear phagocyte system and play a critical role in immune responses.
-
Function:
- Act as antigen-presenting cells for lymphocytes, facilitating the immune reaction.
- Contain specific granules known as Birbeck’s granules and exhibit marked ATP activity.
-
Location:
- Found in the oral epithelium of normal gingiva and in small amounts in the sulcular epithelium.
- Absent from the junctional epithelium of normal gingiva.
Changes in the Periodontal Ligament (PDL) with Aging
- Aging Effects:
- With aging, several changes have been reported in the periodontal
ligament:
- Decreased Numbers of Fibroblasts: This reduction can lead to impaired healing and regeneration of the PDL.
- Irregular Structure: The PDL may exhibit a more irregular structure, paralleling changes in the gingival connective tissues.
- Decreased Organic Matrix Production: This can affect the overall health and function of the PDL.
- Epithelial Cell Rests: There may be a decrease in the number of epithelial cell rests, which are remnants of the Hertwig's epithelial root sheath.
- Increased Amounts of Elastic Fibers: This change may contribute to the altered mechanical properties of the PDL.
- With aging, several changes have been reported in the periodontal
ligament:
Classification of Cementum According to Schroeder
Cementum is a specialized calcified tissue that covers the roots of teeth and plays a crucial role in periodontal health. According to Schroeder, cementum can be classified into several distinct types based on its cellular composition and structural characteristics. Understanding these classifications is essential for dental professionals in diagnosing and treating periodontal conditions.
Classification of Cementum
-
Acellular Afibrillar Cementum:
- Characteristics:
- Contains neither cells nor collagen fibers.
- Present in the coronal region of the tooth.
- Thickness ranges from 1 µm to 15 µm.
- Function:
- This type of cementum is thought to play a role in the attachment of the gingiva to the tooth surface.
- Characteristics:
-
Acellular Extrinsic Fiber Cementum:
- Characteristics:
- Lacks cells but contains closely packed bundles of Sharpey’s fibers, which are collagen fibers that anchor the cementum to the periodontal ligament.
- Typically found in the cervical third of the roots.
- Thickness ranges from 30 µm to 230 µm.
- Function:
- Provides strong attachment of the periodontal ligament to the tooth, contributing to the stability of the tooth in its socket.
- Characteristics:
-
Cellular Mixed Stratified Cementum:
- Characteristics:
- Contains both extrinsic and intrinsic fibers and may contain cells.
- Found in the apical third of the roots, at the apices, and in furcation areas.
- Thickness ranges from 100 µm to 1000 µm.
- Function:
- This type of cementum is involved in the repair and adaptation of the tooth root, especially in response to functional demands and periodontal disease.
- Characteristics:
-
Cellular Intrinsic Fiber Cementum:
- Characteristics:
- Contains cells but no extrinsic collagen fibers.
- Primarily fills resorption lacunae, which are areas where cementum has been resorbed.
- Function:
- Plays a role in the repair of cementum and may be involved in the response to periodontal disease.
- Characteristics:
-
Intermediate Cementum:
- Characteristics:
- A poorly defined zone located near the cementoenamel junction (CEJ) of certain teeth.
- Appears to contain cellular remnants of the Hertwig's epithelial root sheath (HERS) embedded in a calcified ground substance.
- Function:
- Its exact role is not fully understood, but it may be involved in the transition between enamel and cementum.
- Characteristics:
Clinical Significance
-
Importance of Cementum:
- Understanding the different types of cementum is crucial for diagnosing periodontal diseases and planning treatment strategies.
- The presence of various types of cementum can influence the response of periodontal tissues to disease and trauma.
-
Cementum in Periodontal Disease:
- Changes in the thickness and composition of cementum can occur in response to periodontal disease, affecting tooth stability and attachment.
Bacterial Properties Involved in Evasion of Host Defense Mechanisms
Bacteria have evolved various strategies to evade the host's immune defenses, allowing them to persist and cause disease. Understanding these mechanisms is crucial for developing effective treatments and preventive measures against bacterial infections, particularly in the context of periodontal disease. This lecture will explore the bacterial species involved, their properties, and the biological effects of these properties on host defense mechanisms.
Host Defense Mechanisms and Bacterial Evasion Strategies
-
Specific Antibody Evasion
- Bacterial Species:
- Porphyromonas gingivalis
- Prevotella intermedia
- Prevotella melaninogenica
- Capnocytophaga spp.
- Bacterial Property:
- IgA- and IgG-degrading proteases
- Biologic Effect:
- Degradation of specific antibodies, which impairs the host's ability to mount an effective immune response against these bacteria.
- Bacterial Species:
-
Evasion of Polymorphonuclear Leukocytes (PMNs)
- Bacterial Species:
- Aggregatibacter actinomycetemcomitans
- Fusobacterium nucleatum
- Porphyromonas gingivalis
- Treponema denticola
- Bacterial Properties:
- Leukotoxin: A toxin that can induce apoptosis in PMNs.
- Heat-sensitive surface protein: May interfere with immune recognition.
- Capsule: A protective layer that inhibits phagocytosis.
- Inhibition of superoxide production: Reduces the oxidative burst necessary for bacterial killing.
- Biologic Effects:
- Inhibition of PMN function, leading to decreased bacterial killing.
- Induction of apoptosis (programmed cell death) in PMNs, reducing the number of immune cells available to fight infection.
- Inhibition of phagocytosis, allowing bacteria to evade clearance.
- Bacterial Species:
-
Evasion of Lymphocytes
- Bacterial Species:
- Aggregatibacter actinomycetemcomitans
- Fusobacterium nucleatum
- Tannerella forsythia
- Prevotella intermedia
- Bacterial Properties:
- Leukotoxin: Induces apoptosis in lymphocytes.
- Cytolethal distending toxin: Affects cell cycle progression and induces cell death.
- Heat-sensitive surface protein: May interfere with immune recognition.
- Cytotoxin: Directly damages immune cells.
- Biologic Effects:
- Killing of mature B and T cells, leading to a weakened adaptive immune response.
- Nonlethal suppression of lymphocyte activity, impairing the immune response.
- Impairment of lymphocyte function by arresting the cell cycle, leading to decreased responses to antigens and mitogens.
- Induction of apoptosis in mononuclear cells and lymphocytes, further reducing immune capacity.
- Bacterial Species:
-
Inhibition of Interleukin-8 (IL-8) Production
- Bacterial Species:
- Porphyromonas gingivalis
- Bacterial Property:
- Inhibition of IL-8 production by epithelial cells.
- Biologic Effect:
- Impairment of PMN response to bacteria, leading to reduced recruitment and activation of neutrophils at the site of infection.
- Bacterial Species:
Alveolar Process
The alveolar process is a critical component of the dental anatomy, providing support for the teeth and playing a vital role in periodontal health. Understanding its structure and composition is essential for dental professionals in diagnosing and treating various dental conditions.
Components of the Alveolar Process
-
External Plate of Cortical Bone:
- Description: The outer layer of the alveolar process is composed of cortical bone, which is dense and forms a protective outer shell.
- Composition:
- Formed by Haversian bone, which consists of organized structures called osteons.
- Compacted bone lamellae contribute to the strength and stability of the alveolar process.
-
Alveolar Bone Proper:
- Description: The inner socket wall of the alveolar process is known as the alveolar bone proper.
- Radiographic Appearance:
- It is seen as the lamina dura on radiographs, appearing as a radiopaque line surrounding the tooth roots.
- Histological Features:
- Contains a series of openings known as the cribriform plate.
- These openings allow neurovascular bundles to connect the periodontal ligament with the central component of the alveolar bone, which is the cancellous bone.
-
Cancellous Bone:
- Description: Located between the external cortical bone and the alveolar bone proper, cancellous bone consists of trabecular structures.
- Function:
- Acts as supporting alveolar bone, providing strength and flexibility to the alveolar process.
- Interdental Septum:
- The interdental septum consists of cancellous supporting bone enclosed within a compact border, providing stability between adjacent teeth.
Structural Characteristics
- Facial and Lingual Portions:
- Most of the facial and lingual portions of the tooth socket are formed by compact bone alone, providing robust support for the teeth.
- Cancellous Bone Distribution:
- Cancellous bone surrounds the lamina dura in specific areas:
- Apical Areas: The region at the tip of the tooth root.
- Apicolingual Areas: The area where the root meets the lingual surface.
- Interradicular Areas: The space between the roots of multi-rooted teeth.
- Cancellous bone surrounds the lamina dura in specific areas:
Gracey Curettes
Gracey curettes are specialized instruments designed for periodontal therapy, particularly for subgingival scaling and root planing. Their unique design allows for optimal adaptation to the complex anatomy of the teeth and surrounding tissues. This lecture will cover the characteristics, specific uses, and advantages of Gracey curettes in periodontal practice.
-
Gracey curettes are area-specific curettes that come in a set of instruments, each designed and angled to adapt to specific anatomical areas of the dentition.
-
Purpose: They are considered some of the best instruments for subgingival scaling and root planing due to their ability to provide excellent adaptation to complex root anatomy.
Specific Gracey Curette Designs and Uses
-
Gracey 1/2 and 3/4:
- Indication: Designed for use on anterior teeth.
- Application: Effective for scaling and root planing in the anterior region, allowing for precise access to the root surfaces.
-
Gracey 5/6:
- Indication: Suitable for anterior teeth and premolars.
- Application: Versatile for both anterior and premolar areas, providing effective scaling in these regions.
-
Gracey 7/8 and 9/10:
- Indication: Designed for posterior teeth, specifically for facial and lingual surfaces.
- Application: Ideal for accessing the buccal and lingual surfaces of posterior teeth, ensuring thorough cleaning.
-
Gracey 11/12:
- Indication: Specifically designed for the mesial surfaces of posterior teeth.
- Application: Allows for effective scaling of the mesial aspects of molars and premolars.
-
Gracey 13/14:
- Indication: Designed for the distal surfaces of posterior teeth.
- Application: Facilitates access to the distal surfaces of molars and premolars, ensuring comprehensive treatment.
Key Features of Gracey Curettes
-
Area-Specific Design: Each Gracey curette is tailored for specific areas of the dentition, allowing for better access and adaptation to the unique contours of the teeth.
-
Offset Blade: Unlike universal curettes, the blade of a Gracey curette is not positioned at a 90-degree angle to the lower shank. Instead, the blade is angled approximately 60 to 70 degrees from the lower shank, which is referred to as an "offset blade." This design enhances the instrument's ability to adapt to the tooth surface and root anatomy.
Advantages of Gracey Curettes
-
Optimal Adaptation: The area-specific design and offset blade allow for better adaptation to the complex anatomy of the roots, making them highly effective for subgingival scaling and root planing.
-
Improved Access: The angled blades enable clinicians to access difficult-to-reach areas, such as furcations and concavities, which are often challenging with standard instruments.
-
Enhanced Efficiency: The design of Gracey curettes allows for more efficient removal of calculus and biofilm from root surfaces, contributing to improved periodontal health.
-
Reduced Tissue Trauma: The precise design minimizes trauma to the surrounding soft tissues, promoting better healing and patient comfort.
Microbes in Periodontics
Bacteria Associated with Periodontal Health
-
Primary Species:
- Gram-Positive Facultative Bacteria:
- Streptococcus:
- S. sanguis
- S. mitis
- A. viscosus
- A. naeslundii
- Actinomyces:
- Beneficial for maintaining periodontal health.
- Streptococcus:
- Gram-Positive Facultative Bacteria:
-
Protective or Beneficial Bacteria:
- Key Species:
- S. sanguis
- Veillonella parvula
- Corynebacterium ochracea
- Characteristics:
- Found in higher numbers at inactive periodontal sites (no attachment loss).
- Low numbers at sites with active periodontal destruction.
- Prevent colonization of pathogenic microorganisms (e.g., S. sanguis produces peroxide).
- Key Species:
-
Clinical Relevance:
- High levels of C. ochracea and S. sanguis are associated with greater attachment gain post-therapy.
Microbiology of Chronic Plaque-Induced Gingivitis
-
Composition:
- Roughly equal proportions of:
- Gram-Positive: 56%
- Gram-Negative: 44%
- Facultative: 59%
- Anaerobic: 41%
- Roughly equal proportions of:
-
Predominant Gram-Positive Species:
- S. sanguis
- S. mitis
- S. intermedius
- S. oralis
- A. viscosus
- A. naeslundii
- Peptostreptococcus micros
-
Predominant Gram-Negative Species:
- Fusobacterium nucleatum
- Porphyromonas intermedia
- Veillonella parvula
- Haemophilus spp.
- Capnocytophaga spp.
- Campylobacter spp.
-
Pregnancy-Associated Gingivitis:
- Increased levels of steroid hormones and P. intermedia.
Chronic Periodontitis
-
Key Microbial Species:
- High levels of:
- Porphyromonas gingivalis
- Bacteroides forsythus
- Porphyromonas intermedia
- Campylobacter rectus
- Eikenella corrodens
- Fusobacterium nucleatum
- Actinobacillus actinomycetemcomitans
- Peptostreptococcus micros
- Treponema spp.
- Eubacterium spp.
- High levels of:
-
Pathogenic Mechanisms:
- P. gingivalis and A. actinomycetemcomitans can invade host tissue cells.
- Viruses such as Epstein-Barr Virus-1 (EBV-1) and human cytomegalovirus (HCMV) may contribute to bone loss.
Localized Aggressive Periodontitis
- Microbiota Characteristics:
- Predominantly gram-negative, capnophilic, and anaerobic rods.
- Almost all localized juvenile periodontitis (LJP) sites harbor A. actinomycetemcomitans, which can comprise up to 90% of the total cultivable microbiota.