NEET MDS Lessons
Periodontology
Modified Widman Flap Procedure
The modified Widman flap procedure is a surgical technique used in periodontal therapy to treat periodontal pockets while preserving the surrounding tissues and promoting healing. This lecture will discuss the advantages and disadvantages of the modified Widman flap, its indications, and the procedural steps involved.
Advantages of the Modified Widman Flap Procedure
-
Intimate Postoperative Adaptation:
- The main advantage of the modified Widman flap procedure is the ability to establish a close adaptation of healthy collagenous connective tissues and normal epithelium to all tooth surfaces. This promotes better healing and integration of tissues post-surgery
-
Feasibility for Bone Implantation:
- The modified Widman flap procedure is advantageous over curettage, particularly when the implantation of bone and other substances is planned. This allows for better access and preparation of the surgical site for grafting .
-
Conservation of Bone and Optimal Coverage:
- Compared to conventional reverse bevel flap surgery, the modified
Widman flap conserves bone and provides optimal coverage of root
surfaces by soft tissues. This results in:
- A more aesthetically pleasing outcome.
- A favorable environment for oral hygiene.
- Potentially less root sensitivity and reduced risk of root caries.
- More effective pocket closure compared to pocket elimination procedures .
- Compared to conventional reverse bevel flap surgery, the modified
Widman flap conserves bone and provides optimal coverage of root
surfaces by soft tissues. This results in:
-
Minimized Gingival Recession:
- When reattachment or minimal gingival recession is desired, the modified Widman flap is preferred over subgingival curettage, making it a suitable choice for treating deeper pockets (greater than 5 mm) and other complex periodontal conditions.
Disadvantages of the Modified Widman Flap Procedure
- Interproximal Architecture:
- One apparent disadvantage is the potential for flat or concave interproximal architecture immediately following the removal of the surgical dressing, particularly in areas with interproximal bony craters. This can affect the aesthetic outcome and may require further management .
Indications for the Modified Widman Flap Procedure
- Deep Pockets: Pockets greater than 5 mm, especially in the anterior and buccal maxillary posterior regions.
- Intrabony Pockets and Craters: Effective for treating pockets with vertical bone loss.
- Furcation Involvement: Suitable for managing periodontal disease in multi-rooted teeth.
- Bone Grafts: Facilitates the placement of bone grafts during surgery.
- Severe Root Sensitivity: Indicated when root sensitivity is a significant concern.
Procedure Overview
-
Incisions and Flap Reflection:
- Vertical Incisions: Made to access the periodontal pocket.
- Crevicular Incision: A horizontal incision along the gingival margin.
- Horizontal Incision: Undermines and removes the collar of tissue around the teeth.
-
Conservative Debridement:
- Flap is reflected just beyond the alveolar crest.
- Careful removal of all plaque and calculus while preserving the root surface.
- Frequent sterile saline irrigation is used to maintain a clean surgical field.
-
Preservation of Proximal Bone Surface:
- The proximal bone surface is preserved and not curetted, allowing for better healing and adaptation of the flap.
- Exact flap adaptation is achieved with full coverage of the bone.
-
Suturing:
- Suturing is aimed at achieving primary union of the proximal flap projections, ensuring proper healing and tissue integration.
Postoperative Care
- Antibiotic Ointment and Periodontal Dressing: Traditionally, antibiotic ointment was applied over sutures, and a periodontal dressing was placed. However, these practices are often omitted today.
- Current Recommendations: Patients are advised not to disturb the surgical area and to use a chlorhexidine mouth rinse every 12 hours for effective plaque control and to promote healing.
--------------
Neutrophil Disorders Associated with Periodontal Diseases
Neutrophils play a crucial role in the immune response, particularly in combating infections, including those associated with periodontal diseases. Various neutrophil disorders can significantly impact periodontal health, leading to increased susceptibility to periodontal diseases. This lecture will explore the relationship between neutrophil disorders and specific periodontal diseases.
Neutrophil Disorders
-
Diabetes Mellitus
- Description: A metabolic disorder characterized by high blood sugar levels due to insulin resistance or deficiency.
- Impact on Neutrophils: Diabetes can impair neutrophil function, including chemotaxis, phagocytosis, and the oxidative burst, leading to an increased risk of periodontal infections.
-
Papillon-Lefevre Syndrome
- Description: A rare genetic disorder characterized by palmoplantar keratoderma and severe periodontitis.
- Impact on Neutrophils: Patients exhibit neutrophil dysfunction, leading to early onset and rapid progression of periodontal disease.
-
Down’s Syndrome
- Description: A genetic disorder caused by the presence of an extra chromosome 21, leading to various developmental and health issues.
- Impact on Neutrophils: Individuals with Down’s syndrome often have impaired neutrophil function, which contributes to an increased prevalence of periodontal disease.
-
Chediak-Higashi Syndrome
- Description: A rare genetic disorder characterized by immunodeficiency, partial oculocutaneous albinism, and neurological problems.
- Impact on Neutrophils: This syndrome results in defective neutrophil chemotaxis and phagocytosis, leading to increased susceptibility to infections, including periodontal diseases.
-
Drug-Induced Agranulocytosis
- Description: A condition characterized by a dangerously low level of neutrophils due to certain medications.
- Impact on Neutrophils: The reduction in neutrophil count compromises the immune response, increasing the risk of periodontal infections.
-
Cyclic Neutropenia
- Description: A rare genetic disorder characterized by recurrent episodes of neutropenia (low neutrophil count) occurring every 21 days.
- Impact on Neutrophils: During neutropenic episodes, patients are at a heightened risk for infections, including periodontal disease.
Influence of Host Response on Periodontal Disease
The host response plays a critical role in the progression and management of periodontal disease. Various host factors influence bacterial colonization, invasion, tissue destruction, and healing processes. Understanding these interactions is essential for developing effective treatment strategies.
Aspects of Periodontal Disease and Host Factors
-
Bacterial Colonization:
- Host Factor: Antibody C in crevicular fluid.
- Mechanism:
- Antibody C inhibits the adherence and coaggregation of bacteria in the subgingival environment.
- This action potentially reduces bacterial numbers by promoting lysis (destruction of bacterial cells).
- Implication: A robust antibody response can help control the initial colonization of pathogenic bacteria, thereby influencing the onset of periodontal disease.
-
Bacterial Invasion:
- Host Factor: Antibody C-mediated lysis and neutrophil activity.
- Mechanism:
- Antibody C-mediated lysis reduces bacterial counts in the periodontal tissues.
- Neutrophils, through processes such as chemotaxis (movement towards chemical signals), phagocytosis (engulfing and digesting bacteria), and lysis, further reduce bacterial counts.
- Implication: An effective neutrophil response is crucial for controlling bacterial invasion and preventing the progression of periodontal disease.
-
Tissue Destruction:
- Host Factors: Antibody-mediated hypersensitivity and cell-mediated immune responses.
- Mechanism:
- Activation of tissue factors, such as collagenase, leads to the breakdown of connective tissue and periodontal structures.
- The immune response can inadvertently contribute to tissue destruction, as inflammatory mediators can damage host tissues.
- Implication: While the immune response is essential for fighting infection, it can also lead to collateral damage in periodontal tissues, exacerbating disease progression.
-
Healing and Fibrosis:
- Host Factors: Lymphocytes and macrophage-produced chemotactic factors.
- Mechanism:
- Lymphocytes and macrophages release chemotactic factors that attract fibroblasts to the site of injury.
- Fibroblasts are activated by specific factors, promoting tissue repair and fibrosis (the formation of excess connective tissue).
- Implication: A balanced immune response is necessary for effective healing and regeneration of periodontal tissues following inflammation.
Naber’s Probe and Furcation Involvement
Furcation involvement is a critical aspect of periodontal disease that affects the prognosis of teeth with multiple roots. Naber’s probe is a specialized instrument designed to assess furcation areas, allowing clinicians to determine the extent of periodontal attachment loss and the condition of the furcation. This lecture will cover the use of Naber’s probe, the classification of furcation involvement, and the clinical significance of these classifications.
Naber’s Probe
-
Description: Naber’s probe is a curved, blunt-ended instrument specifically designed for probing furcation areas. Its unique shape allows for horizontal probing, which is essential for accurately assessing the anatomy of multi-rooted teeth.
-
Usage: The probe is inserted horizontally into the furcation area to evaluate the extent of periodontal involvement. The clinician can feel the anatomical fluting between the roots, which aids in determining the classification of furcation involvement.
Classification of Furcation Involvement
Furcation involvement is classified into four main classes using Naber’s probe:
-
Class I:
- Description: The furcation can be probed to a depth of 3 mm.
- Clinical Findings: The probe can feel the anatomical fluting between the roots, but it cannot engage the roof of the furcation.
- Significance: Indicates early furcation involvement with minimal attachment loss.
-
Class II:
- Description: The furcation can be probed to a depth greater than 3 mm, but not through and through.
- Clinical Findings: This class represents a range between Class I and Class III, where there is partial loss of attachment but not complete penetration through the furcation.
- Significance: Indicates moderate furcation involvement that may require intervention.
-
Class III:
- Description: The furcation can be completely probed through and through.
- Clinical Findings: The probe passes from one furcation to the other, indicating significant loss of periodontal support.
- Significance: Represents advanced furcation involvement, often associated with a poor prognosis for the affected tooth.
-
Class III+:
- Description: The probe can go halfway across the tooth.
- Clinical Findings: Similar to Class III, but with partial obstruction or remaining tissue.
- Significance: Indicates severe furcation involvement with a significant loss of attachment.
-
Class IV:
- Description: Clinically, the examiner can see through the furcation.
- Clinical Findings: There is complete loss of tissue covering the furcation, making it visible upon examination.
- Significance: Indicates the most severe form of furcation involvement, often leading to tooth mobility and extraction.
Measurement Technique
- Measurement Reference: Measurements are taken from an imaginary tangent connecting the prominences of the root surfaces of both roots. This provides a consistent reference point for assessing the depth of furcation involvement.
Clinical Significance
-
Prognosis: The classification of furcation involvement is crucial for determining the prognosis of multi-rooted teeth. Higher classes of furcation involvement generally indicate a poorer prognosis and may necessitate more aggressive treatment strategies.
-
Treatment Planning: Understanding the extent of furcation involvement helps clinicians develop appropriate treatment plans, which may include scaling and root planing, surgical intervention, or extraction.
-
Monitoring: Regular assessment of furcation involvement using Naber’s probe can help monitor disease progression and the effectiveness of periodontal therapy.
Alveolar Process
The alveolar process is a critical component of the dental anatomy, providing support for the teeth and playing a vital role in periodontal health. Understanding its structure and composition is essential for dental professionals in diagnosing and treating various dental conditions.
Components of the Alveolar Process
-
External Plate of Cortical Bone:
- Description: The outer layer of the alveolar process is composed of cortical bone, which is dense and forms a protective outer shell.
- Composition:
- Formed by Haversian bone, which consists of organized structures called osteons.
- Compacted bone lamellae contribute to the strength and stability of the alveolar process.
-
Alveolar Bone Proper:
- Description: The inner socket wall of the alveolar process is known as the alveolar bone proper.
- Radiographic Appearance:
- It is seen as the lamina dura on radiographs, appearing as a radiopaque line surrounding the tooth roots.
- Histological Features:
- Contains a series of openings known as the cribriform plate.
- These openings allow neurovascular bundles to connect the periodontal ligament with the central component of the alveolar bone, which is the cancellous bone.
-
Cancellous Bone:
- Description: Located between the external cortical bone and the alveolar bone proper, cancellous bone consists of trabecular structures.
- Function:
- Acts as supporting alveolar bone, providing strength and flexibility to the alveolar process.
- Interdental Septum:
- The interdental septum consists of cancellous supporting bone enclosed within a compact border, providing stability between adjacent teeth.
Structural Characteristics
- Facial and Lingual Portions:
- Most of the facial and lingual portions of the tooth socket are formed by compact bone alone, providing robust support for the teeth.
- Cancellous Bone Distribution:
- Cancellous bone surrounds the lamina dura in specific areas:
- Apical Areas: The region at the tip of the tooth root.
- Apicolingual Areas: The area where the root meets the lingual surface.
- Interradicular Areas: The space between the roots of multi-rooted teeth.
- Cancellous bone surrounds the lamina dura in specific areas:
Periodontal Medications and Their Uses
Periodontal medications play a crucial role in the management of periodontal diseases, aiding in the treatment of infections, inflammation, and tissue regeneration. Understanding the various types of medications and their specific uses is essential for effective periodontal therapy.
Types of Periodontal Medications
-
Antibiotics:
- Uses:
- Used to treat bacterial infections associated with periodontal disease.
- Commonly prescribed antibiotics include amoxicillin, metronidazole, and doxycycline.
- Mechanism:
- They help reduce the bacterial load in periodontal pockets, promoting healing and reducing inflammation.
- Uses:
-
Antimicrobial Agents:
- Chlorhexidine:
- Uses: A topical antiseptic used as a mouth rinse to reduce plaque and gingivitis.
- Mechanism: It disrupts bacterial cell membranes and inhibits bacterial growth.
- Tetracycline:
- Uses: Can be used topically in periodontal pockets to reduce bacteria.
- Mechanism: Inhibits protein synthesis in bacteria, reducing their ability to cause infection.
- Chlorhexidine:
-
Anti-Inflammatory Medications:
- Non-Steroidal Anti-Inflammatory Drugs (NSAIDs):
- Uses: Used to manage pain and inflammation associated with periodontal disease.
- Examples: Ibuprofen and naproxen.
- Corticosteroids:
- Uses: May be used in severe cases to reduce inflammation.
- Mechanism: Suppress the immune response and reduce inflammation.
- Non-Steroidal Anti-Inflammatory Drugs (NSAIDs):
-
Local Delivery Systems:
- Doxycycline Gel (Atridox):
- Uses: A biodegradable gel that releases doxycycline directly into periodontal pockets.
- Mechanism: Provides localized antibiotic therapy to reduce bacteria and inflammation.
- Minocycline Microspheres (Arestin):
- Uses: A localized antibiotic treatment that is placed directly into periodontal pockets.
- Mechanism: Releases minocycline over time to combat infection.
- Doxycycline Gel (Atridox):
-
Regenerative Agents:
- Bone Grafts and Guided Tissue Regeneration (GTR) Materials:
- Uses: Used in surgical procedures to promote the regeneration of lost periodontal tissues.
- Mechanism: Provide a scaffold for new tissue growth and prevent the ingrowth of epithelium into the defect.
- Bone Grafts and Guided Tissue Regeneration (GTR) Materials:
-
Desensitizing Agents:
- Fluoride Varnishes:
- Uses: Applied to sensitive areas to reduce sensitivity and promote remineralization.
- Mechanism: Strengthens enamel and reduces sensitivity by occluding dentinal tubules.
- Fluoride Varnishes:
Clinical Significance of Periodontal Medications
-
Management of Periodontal Disease:
- Medications are essential in controlling infections and inflammation, which are critical for the successful treatment of periodontal diseases.
-
Adjunct to Non-Surgical Therapy:
- Periodontal medications can enhance the effectiveness of non-surgical treatments, such as scaling and root planing, by reducing bacterial load and inflammation.
-
Surgical Interventions:
- In surgical procedures, medications can aid in healing and regeneration, improving outcomes for patients undergoing periodontal surgery.
-
Patient Compliance:
- Educating patients about the importance of medications in their treatment plan can improve compliance and overall treatment success.
Stippling of the Gingiva
-
Stippling refers to the textured surface of the gingiva that resembles the skin of an orange. This characteristic is best observed when the gingiva is dried.
-
Characteristics:
- Location:
- The attached gingiva is typically stippled, while the marginal gingiva is not.
- The central portion of the interdental gingiva may exhibit stippling, but its marginal borders are usually smooth.
- Surface Variation:
- Stippling is generally less prominent on the lingual surfaces compared to the facial surfaces and may be absent in some individuals.
- Age-Related Changes:
- Stippling is absent in infancy, begins to appear around 5 years of age, increases until adulthood, and may start to disappear in old age.
- Location:
Attached Gingiva
-
Definition: The attached gingiva is the portion of the gingiva that is firmly bound to the underlying alveolar bone and extends from the free gingival groove to the mucogingival junction, where it meets the alveolar mucosa.
-
Characteristics:
- Structure:
- The attached gingiva is classified as a mucoperiosteum, tightly bound to the underlying alveolar bone.
- Width:
- The width of the attached gingiva is greatest in the incisor
region, measuring approximately:
- 3.5 – 4.5 mm in the maxilla
- 3.3 – 3.9 mm in the mandible
- It is narrower in the posterior segments, measuring about:
- 1.9 mm in the maxillary first premolars
- 1.8 mm in the mandibular first premolars.
- The width of the attached gingiva is greatest in the incisor
region, measuring approximately:
- Histological Features:
- The attached gingiva is thick and keratinized (or parakeratinized) and is classified as masticatory mucosa.
- Masticatory mucosa is characterized by a keratinized epithelium and a thick lamina propria, providing resistance to mechanical forces.
- Structure:
Masticatory vs. Lining Mucosa
-
Masticatory Mucosa:
- Found in areas subject to high compression and friction, such as the gingiva and hard palate.
- Characterized by keratinized epithelium and a thick lamina propria, making it resistant to masticatory forces.
-
Lining Mucosa:
- Mobile, distensible, and non-keratinized.
- Found in areas such as the lips, cheeks, alveolus, floor of the mouth, ventral surface of the tongue, and soft palate.
-
Specialized Mucosa:
- Found on the dorsum of the tongue, adapted for specific functions such as taste.
Changes in Plaque pH After Sucrose Rinse
The pH of dental plaque is a critical factor in the development of dental caries and periodontal disease. Key findings from various studies that investigated the changes in plaque pH following carbohydrate rinses, particularly focusing on sucrose and glucose.
Key Findings from Studies
-
Monitoring Plaque pH Changes:
- A study reported that changes in plaque pH after a sucrose rinse were monitored using plaque sampling, antimony and glass electrodes, and telemetry.
- Results:
- The minimum pH at approximal sites (areas between teeth) was approximately 0.7 pH units lower than that on buccal surfaces (outer surfaces of the teeth).
- The pH at the approximal site remained below resting levels for over 120 minutes.
- The area under the pH response curves from approximal sites was five times greater than that from buccal surfaces, indicating a more significant and prolonged acidogenic response in interproximal areas.
-
Stephan's Early Studies (1935):
- Method: Colorimetric measurement of plaque pH suspended in water.
- Findings:
- The pH of 211 plaque samples ranged from 4.6 to 7.0.
- The mean pH value was found to be 5.9, indicating a generally acidic environment in dental plaque.
-
Stephan's Follow-Up Studies (1940):
- Method: Use of an antimony electrode to measure in situ plaque pH after rinsing with sugar solutions.
- Findings:
- A 10% solution of glucose or sucrose caused a rapid drop in plaque pH by about 2 units within 2 to 5 minutes, reaching values between 4.5 and 5.0.
- A 1% lactose solution lowered the pH by 0.3 units, while a 1% glucose solution caused a drop of 1.5 units.
- A 1% boiled starch solution resulted in a reduction of 1.5 pH units over 51 minutes.
- In all cases, the pH tended to return to initial values within approximately 2 hours.
-
Investigation of Proximal Cavities:
- Studies of actual proximal cavities opened mechanically showed that the lowest pH values ranged from 4.6 to 4.1.
- After rinsing with a 10% glucose or sucrose solution, the pH in the plaque dropped to between 4.5 and 5.0 within 2 to 5 minutes and gradually returned to baseline levels within 1 to 2 hours.
Implications
- The studies highlight the significant impact of carbohydrate exposure, particularly sucrose and glucose, on the pH of dental plaque.
- The rapid drop in pH following carbohydrate rinses indicates an acidogenic response from plaque microorganisms, which can contribute to enamel demineralization and caries development.
- The prolonged acidic environment in approximal sites suggests that these areas may be more susceptible to caries due to the slower recovery of pH levels.