Talk to us?

- NEETMDS- courses
NEET MDS Lessons
Periodontology

Trauma from Occlusion

Trauma from occlusion refers to the injury sustained by periodontal tissues when occlusal forces exceed their adaptive capacity.

1. Trauma from Occlusion

  • This term describes the injury that occurs to periodontal tissues when the forces exerted during occlusion (the contact between opposing teeth) exceed the ability of those tissues to adapt.
  • Traumatic Occlusion: An occlusion that produces such injury is referred to as a traumatic occlusion. This can result from various factors, including malocclusion, excessive occlusal forces, or parafunctional habits (e.g., bruxism).

2. Clinical Signs of Trauma to the Periodontium

The most common clinical sign of trauma to the periodontium is:

  • Increased Tooth Mobility: As the periodontal tissues are subjected to excessive forces, they may become compromised, leading to increased mobility of the affected teeth. This is often one of the first observable signs of trauma from occlusion.

3. Radiographic Signs of Trauma from Occlusion

Radiographic examination can reveal several signs indicative of trauma from occlusion:

  1. Increased Width of Periodontal Space:

    • The periodontal ligament space may appear wider on radiographs due to the increased forces acting on the tooth, leading to a loss of attachment and bone support.
  2. Vertical Destruction of Inter-Dental Septum:

    • Trauma from occlusion can lead to vertical bone loss in the inter-dental septa, which may be visible on radiographs as a reduction in bone height between adjacent teeth.
  3. Radiolucency and Condensation of the Alveolar Bone:

    • Areas of radiolucency may indicate bone loss, while areas of increased radiopacity (condensation) can suggest reactive changes in the bone due to the stress of occlusal forces.
  4. Root Resorption:

    • In severe cases, trauma from occlusion can lead to root resorption, which may be observed as a loss of root structure on radiographs.

Periodontal Fibers

Periodontal fibers play a crucial role in maintaining the integrity of the periodontal ligament and supporting the teeth within the alveolar bone. Understanding the different groups of periodontal fibers is essential for comprehending their functions in periodontal health and disease.

1. Gingivodental Group

  • Location:
    • Present on the facial, lingual, and interproximal surfaces of the teeth.
  • Attachment:
    • These fibers are embedded in the cementum just beneath the epithelium at the base of the gingival sulcus.
  • Function:
    • They help support the gingiva and maintain the position of the gingival margin.

2. Circular Group

  • Location:
    • These fibers course through the connective tissue of the marginal and interdental gingiva.
  • Attachment:
    • They encircle the tooth in a ring-like fashion.
  • Function:
    • The circular fibers help maintain the contour of the gingiva and provide support to the marginal gingiva.

3. Transseptal Group

  • Location:
    • Located interproximally, these fibers extend between the cementum of adjacent teeth.
  • Attachment:
    • They lie in the area between the epithelium at the base of the gingival sulcus and the crest of the interdental bone.
  • Function:
    • The transseptal fibers are primarily responsible for the post-retention relapse of orthodontically positioned teeth.
    • They are sometimes classified as principal fibers of the periodontal ligament.
    • Collectively, they form the interdental ligament of the arch, providing stability to the interproximal areas.

4. Semicircular Fibers

  • Location:
    • These fibers attach to the proximal surface of a tooth immediately below the cementoenamel junction (CEJ).
  • Attachment:
    • They go around the facial or lingual marginal gingiva of the tooth and attach to the other proximal surface of the same tooth.
  • Function:
    • Semicircular fibers help maintain the position of the tooth and support the gingival tissue around it.

5. Transgingival Fibers

  • Location:
    • These fibers attach to the proximal surface of one tooth and traverse the interdental space diagonally to attach to the proximal surface of the adjacent tooth.
  • Function:
    • Transgingival fibers provide support across the interdental space, helping to maintain the position of adjacent teeth and the integrity of the gingival tissue.

Periodontics: Dental specialty deals with the supporting and surrounding tissues of the teeth. 

1. Periodontium: tissues that invest and support teeth Includes Gingiva, Alveolar mucosa  Cementum, Periodontal ligament, Alveolar bone, Support bone

2. Periodontal disease: changes to periodontium beyond normal range of variation

a. Specific plaque hypothesis: specific microorganisms cause periodontal disease; mostly anaerobes. Three implicated: Actinobacillus actinomycetemcomitans, Porphyromonas gingivalis, and Bacteriodes forsythus

b. Contributing factors: often a combination of factors

i. Local: calculus (tarter, home for bacteria, ­ with age), traumatic occlusal forces, caries (root caries), overhangs and over-contoured restorations, open contacts with food impaction, missing/malaligned teeth

Invasion of biological width: from free gingival margin -> attached gingiva need ~ 3 mm.  If enter this area -> problems (e.g., resorption)

ii. Host factors: exacerbate periodontal problems; e.g., smoking/tobacco use, pregnancy and puberty (hormonal changes, ­ blood vessel permeability), stress, poor diet

iii.Medications: often -> tissue overgrowth; e.g., oral contraceptives, antidepressants, heart medicines, transplant anti-rejection drugs

iv.Systemic diseases: e.g., diabetes, immunosuppression

B. Gingivitis: inflammation of gingiva; ­ with age; generally reversible

C. Periodontitis: inflammation of supporting tissues of teeth, characterized by loss of attachment (PDL) and bone; generally irreversible

D.       Periodontal disease as risk factor for systemic diseases:

1.        Causes difficulty for diabetics to control blood sugar

2.        Pregnant women with periodontal disease ~ 7 times more likely to have premature and/or underweight baby

3.        Periodontal diseased patients may be at risk for heart disease

Classification of Embrasures

  1. Type I Embrasures:

    • Description: These are characterized by the presence of interdental papillae that completely fill the embrasure space, with no gingival recession.
    • Recommended Cleaning Device:
      • Dental Floss: Dental floss is most effective in cleaning Type I embrasures. It can effectively remove plaque and debris from the tight spaces between teeth.
  2. Type II Embrasures:

    • Description: These embrasures have larger spaces due to some loss of attachment, but the interdental papillae are still present.
    • Recommended Cleaning Device:
      • Interproximal Brush: For Type II embrasures, interproximal brushes are recommended. These brushes have bristles that can effectively clean around the exposed root surfaces and between teeth, providing better plaque removal than dental floss in these larger spaces.
  3. Type III Embrasures:

    • Description: These spaces occur when there is significant loss of attachment, resulting in the absence of interdental papillae.
    • Recommended Cleaning Device:
      • Single Tufted Brushes: Single tufted brushes (also known as end-tuft brushes) are ideal for cleaning Type III embrasures. They can reach areas that are difficult to access with traditional floss or brushes, effectively cleaning the exposed root surfaces and the surrounding areas.

Classification of Cementum According to Schroeder

Cementum is a specialized calcified tissue that covers the roots of teeth and plays a crucial role in periodontal health. According to Schroeder, cementum can be classified into several distinct types based on its cellular composition and structural characteristics. Understanding these classifications is essential for dental professionals in diagnosing and treating periodontal conditions.

Classification of Cementum

  1. Acellular Afibrillar Cementum:

    • Characteristics:
      • Contains neither cells nor collagen fibers.
      • Present in the coronal region of the tooth.
      • Thickness ranges from 1 µm to 15 µm.
    • Function:
      • This type of cementum is thought to play a role in the attachment of the gingiva to the tooth surface.
  2. Acellular Extrinsic Fiber Cementum:

    • Characteristics:
      • Lacks cells but contains closely packed bundles of Sharpey’s fibers, which are collagen fibers that anchor the cementum to the periodontal ligament.
      • Typically found in the cervical third of the roots.
      • Thickness ranges from 30 µm to 230 µm.
    • Function:
      • Provides strong attachment of the periodontal ligament to the tooth, contributing to the stability of the tooth in its socket.
  3. Cellular Mixed Stratified Cementum:

    • Characteristics:
      • Contains both extrinsic and intrinsic fibers and may contain cells.
      • Found in the apical third of the roots, at the apices, and in furcation areas.
      • Thickness ranges from 100 µm to 1000 µm.
    • Function:
      • This type of cementum is involved in the repair and adaptation of the tooth root, especially in response to functional demands and periodontal disease.
  4. Cellular Intrinsic Fiber Cementum:

    • Characteristics:
      • Contains cells but no extrinsic collagen fibers.
      • Primarily fills resorption lacunae, which are areas where cementum has been resorbed.
    • Function:
      • Plays a role in the repair of cementum and may be involved in the response to periodontal disease.
  5. Intermediate Cementum:

    • Characteristics:
      • A poorly defined zone located near the cementoenamel junction (CEJ) of certain teeth.
      • Appears to contain cellular remnants of the Hertwig's epithelial root sheath (HERS) embedded in a calcified ground substance.
    • Function:
      • Its exact role is not fully understood, but it may be involved in the transition between enamel and cementum.

Clinical Significance

  • Importance of Cementum:

    • Understanding the different types of cementum is crucial for diagnosing periodontal diseases and planning treatment strategies.
    • The presence of various types of cementum can influence the response of periodontal tissues to disease and trauma.
  • Cementum in Periodontal Disease:

    • Changes in the thickness and composition of cementum can occur in response to periodontal disease, affecting tooth stability and attachment.

Junctional Epithelium

The junctional epithelium (JE) is a critical component of the periodontal tissue, playing a vital role in the attachment of the gingiva to the tooth surface. Understanding its structure, function, and development is essential for comprehending periodontal health and disease.

Structure of the Junctional Epithelium

  1. Composition:

    • The junctional epithelium consists of a collar-like band of stratified squamous non-keratinized epithelium.
    • This type of epithelium is designed to provide a barrier while allowing for some flexibility and permeability.
  2. Layer Thickness:

    • In early life, the junctional epithelium is approximately 3-4 layers thick.
    • As a person ages, the number of epithelial layers can increase significantly, reaching 10 to 20 layers in older individuals.
    • This increase in thickness may be a response to various factors, including mechanical stress and inflammation.
  3. Length:

    • The length of the junctional epithelium typically ranges from 0.25 mm to 1.35 mm.
    • This length can vary based on individual anatomy and periodontal health.

Development of the Junctional Epithelium

  • The junctional epithelium is formed by the confluence of the oral epithelium and the reduced enamel epithelium during the process of tooth eruption.
  • This fusion is crucial for establishing the attachment of the gingiva to the tooth surface, creating a seal that helps protect the underlying periodontal tissues from microbial invasion.

Function of the Junctional Epithelium

  • Barrier Function: The junctional epithelium serves as a barrier between the oral cavity and the underlying periodontal tissues, helping to prevent the entry of pathogens.
  • Attachment: It provides a strong attachment to the tooth surface, which is essential for maintaining periodontal health.
  • Regenerative Capacity: The junctional epithelium has a high turnover rate, allowing it to regenerate quickly in response to injury or inflammation.

Clinical Relevance

  • Periodontal Disease: Changes in the structure and function of the junctional epithelium can be indicative of periodontal disease. For example, inflammation can lead to increased permeability and loss of attachment.
  • Healing and Repair: Understanding the properties of the junctional epithelium is important for developing effective treatments for periodontal disease and for managing healing after periodontal surgery.

Dental Calculus

Dental calculus, also known as tartar, is a hard deposit that forms on teeth due to the mineralization of dental plaque. Understanding the composition and crystal forms of calculus is essential for dental professionals in diagnosing and managing periodontal disease.

Crystal Forms in Dental Calculus

  1. Common Crystal Forms:

    • Dental calculus typically contains two or more crystal forms. The most frequently detected forms include:
      • Hydroxyapatite:
        • This is the primary mineral component of both enamel and calculus, constituting a significant portion of the calculus sample.
        • Hydroxyapatite is a crystalline structure that provides strength and stability to the calculus.
      • Octacalcium Phosphate:
        • Detected in a high percentage of supragingival calculus samples (97% to 100%).
        • This form is also a significant contributor to the bulk of calculus.
  2. Other Crystal Forms:

    • Brushite:
      • More commonly found in the mandibular anterior region of the mouth.
      • Brushite is a less stable form of calcium phosphate and may indicate a younger calculus deposit.
    • Magnesium Whitlockite:
      • Typically found in the posterior areas of the mouth.
      • This form may be associated with older calculus deposits and can indicate changes in the mineral composition over time.
  3. Variation with Age:

    • The incidence and types of crystal forms present in calculus can vary with the age of the deposit.
    • Younger calculus deposits may have a higher proportion of brushite, while older deposits may show a predominance of hydroxyapatite and magnesium whitlockite.

Clinical Significance

  1. Understanding Calculus Formation:

    • Knowledge of the crystal forms in calculus can help dental professionals understand the mineralization process and the conditions under which calculus forms.
  2. Implications for Treatment:

    • The composition of calculus can influence treatment strategies. For example, older calculus deposits may be more difficult to remove due to their hardness and mineral content.
  3. Assessment of Periodontal Health:

    • The presence and type of calculus can provide insights into a patient’s oral hygiene practices and periodontal health. Regular monitoring and removal of calculus are essential for preventing periodontal disease.
  4. Research and Development:

    • Understanding the mineral composition of calculus can aid in the development of new dental materials and treatments aimed at preventing calculus formation and promoting oral health.

Explore by Exams