NEET MDS Lessons
Periodontology
Aggressive periodontitis (AP) is a multifactorial, severe, and rapidly progressive form of periodontitis that primarily affects younger patients. It is characterized by a unique set of clinical and microbiological features that distinguish it from other forms of periodontal disease.
Key Characteristics
- Rapid Progression: AP is marked by a swift deterioration of periodontal tissues.
- Age Group: Primarily affects adolescents and young adults, but can occur at any age.
- Multifactorial Etiology: Involves a combination of microbiological, immunological, genetic, and environmental factors.
Other Findings
- Presence of Aggregatibacter actinomycetemcomitans (A.a.) in diseased sites.
- Abnormal host responses, including impaired phagocytosis and chemotaxis.
- Hyperresponsive macrophages leading to exaggerated inflammatory responses.
- The disease may exhibit self-arresting tendencies in some cases.
Classification
Aggressive periodontitis can be classified into two main types:
- Localized Aggressive Periodontitis (LAP): Typically affects the permanent molars and incisors, often with localized attachment loss.
- Generalized Aggressive Periodontitis (GAP): Involves more widespread periodontal tissue destruction.
Risk Factors
Microbiological Factors
- Aggregatibacter actinomycetemcomitans: A primary pathogen associated with LAP, producing a potent leukotoxin that kills neutrophils.
- Different strains of A.a. produce varying levels of leukotoxin, with highly toxic strains more prevalent in affected individuals.
Immunological Factors
- Human Leukocyte Antigens (HLAs): HLA-A9 and B-15 are candidate markers for aggressive periodontitis.
- Defective neutrophil function leads to impaired chemotaxis and phagocytosis.
- Hyper-responsive macrophage phenotype, characterized by elevated levels of PGE2 and IL-1β, may contribute to connective tissue breakdown and bone loss.
Genetic Factors
- Familial clustering of neutrophil abnormalities suggests a genetic predisposition.
- Genetic control of antibody responses to A.a., with variations in the ability to produce protective IgG2 antibodies.
Environmental Factors
- Smoking is a significant risk factor, with smokers experiencing more severe periodontal destruction compared to non-smokers.
Treatment Approaches
General Considerations
- Treatment strategies depend on the type and extent of periodontal destruction.
- GAP typically has a poorer prognosis compared to LAP, as it is less likely to enter spontaneous remission.
Conventional Periodontal Therapy
- Patient Education: Informing patients about the disease and its implications.
- Oral Hygiene Instructions: Reinforcing proper oral hygiene practices.
- Scaling and Root Planing: Removal of plaque and calculus to control local factors.
Surgical Resection Therapy
- Aimed at reducing or eliminating pocket depth.
- Contraindicated in cases of severe horizontal bone loss due to the risk of increased tooth mobility.
Regenerative Therapy
- Potential for regeneration is promising in AP cases.
- Techniques include open flap surgical debridement, root surface conditioning with tetracycline, and the use of allogenic bone grafts.
- Recent advances involve the use of enamel matrix proteins to promote cementum regeneration and new attachment.
Antimicrobial Therapy
- Often required as adjunctive treatment to eliminate A.a. from periodontal tissues.
- Tetracycline: Administered in various regimens to concentrate in periodontal tissues and inhibit A.a. growth.
- Combination Therapy: Metronidazole combined with amoxicillin has shown efficacy alongside periodontal therapy.
- Doxycycline: Used at a dose of 100 mg/day.
- Chlorhexidine (CHX): Irrigation and home rinsing to control bacterial load.
Host Modulation
- Involves the use of sub-antimicrobial dose doxycycline (SDD) to prevent periodontal attachment loss by modulating the activity of matrix metalloproteinases (MMPs), particularly collagenase and gelatinase.
Periodontal Diseases Associated with Neutrophil Disorders
-
Acute Necrotizing Ulcerative Gingivitis (ANUG)
- Description: A severe form of gingivitis characterized by necrosis of the interdental papillae, pain, and foul odor.
- Association: Neutrophil dysfunction can exacerbate the severity of ANUG, leading to rapid tissue destruction.
-
Localized Juvenile Periodontitis
- Description: A form of periodontitis that typically affects adolescents and is characterized by localized bone loss around the permanent teeth.
- Association: Impaired neutrophil function contributes to the pathogenesis of this condition.
-
Prepubertal Periodontitis
- Description: A rare form of periodontitis that occurs in children before puberty, leading to rapid attachment loss and bone destruction.
- Association: Neutrophil disorders can play a significant role in the development and progression of this disease.
-
Rapidly Progressive Periodontitis
- Description: A form of periodontitis characterized by rapid attachment loss and bone destruction, often occurring in young adults.
- Association: Neutrophil dysfunction may contribute to the aggressive nature of this disease.
-
Refractory Periodontitis
- Description: A form of periodontitis that does not respond to conventional treatment and continues to progress despite therapy.
- Association: Neutrophil disorders may be implicated in the persistent nature of this condition.
Ecological Succession of Biofilm in Dental Plaque
Overview of Biofilm Formation
Biofilm formation on tooth surfaces is a dynamic process characterized by ecological succession, where microbial communities evolve over time. This process transitions from an early aerobic environment dominated by gram-positive facultative species to a later stage characterized by a highly oxygen-deprived environment where gram-negative anaerobic microorganisms predominate.
Stages of Biofilm Development
-
Initial Colonization:
- Environment: The initial phase occurs in an aerobic environment.
- Primary Colonizers:
- The first bacteria to colonize the pellicle-coated tooth surface are predominantly gram-positive facultative microorganisms.
- Key Species:
- Actinomyces viscosus
- Streptococcus sanguis
- Characteristics:
- These bacteria can thrive in the presence of oxygen and play a crucial role in the establishment of the biofilm.
-
Secondary Colonization:
- Environment: As the biofilm matures, the environment becomes increasingly anaerobic due to the metabolic activities of the initial colonizers.
- Secondary Colonizers:
- These microorganisms do not initially colonize clean tooth surfaces but adhere to the existing bacterial cells in the plaque mass.
- Key Species:
- Prevotella intermedia
- Prevotella loescheii
- Capnocytophaga spp.
- Fusobacterium nucleatum
- Porphyromonas gingivalis
- Coaggregation:
- Secondary colonizers adhere to primary colonizers through a process known as coaggregation, which involves specific interactions between bacterial cells.
-
Coaggregation Examples:
- Coaggregation is a critical mechanism that facilitates the establishment of complex microbial communities within the biofilm.
- Well-Known Examples:
- Fusobacterium nucleatum with Streptococcus sanguis
- Prevotella loescheii with Actinomyces viscosus
- Capnocytophaga ochracea with Actinomyces viscosus
Implications of Ecological Succession
- Microbial Diversity: The transition from gram-positive to gram-negative organisms reflects an increase in microbial diversity and complexity within the biofilm.
- Pathogenic Potential: The accumulation of anaerobic gram-negative bacteria is associated with the development of periodontal diseases, as these organisms can produce virulence factors that contribute to tissue destruction and inflammation.
- Biofilm Stability: The interactions between different bacterial species through coaggregation enhance the stability and resilience of the biofilm, making it more challenging to remove through mechanical cleaning.
-----------------------------------------------
Subgingival and Supragingival Calculus
Overview of Calculus Formation
Calculus, or tartar, is a hardened form of dental plaque that can form on both supragingival (above the gum line) and subgingival (below the gum line) surfaces. Understanding the differences between these two types of calculus is essential for effective periodontal disease management.
Subgingival Calculus
-
Color and Composition:
- Appearance: Subgingival calculus is typically dark green or dark brown in color.
- Causes of Color:
- The dark color is likely due to the presence of matrix components that differ from those found in supragingival calculus.
- It is influenced by iron heme pigments that are associated with the bleeding of inflamed gingiva, reflecting the inflammatory state of the periodontal tissues.
-
Formation Factors:
- Matrix Components: The subgingival calculus matrix contains blood products, which contribute to its darker coloration.
- Bacterial Environment: The subgingival environment is typically more anaerobic and harbors different bacterial species compared to supragingival calculus.
Supragingival Calculus
-
Formation Factors:
- Dependence on Plaque and Saliva:
- The degree of supragingival calculus formation is primarily influenced by the amount of bacterial plaque present and the secretion of salivary glands.
- Increased plaque accumulation leads to greater calculus formation.
- Dependence on Plaque and Saliva:
-
Inorganic Components:
- Source: The inorganic components of supragingival calculus are mainly derived from saliva.
- Composition: These components include minerals such as calcium and phosphate, which contribute to the calcification process of plaque.
Comparison of Inorganic Components
-
Supragingival Calculus:
- Inorganic components are primarily sourced from saliva, which contains minerals that facilitate the formation of calculus on the tooth surface.
-
Subgingival Calculus:
- In contrast, the inorganic components of subgingival calculus are derived mainly from crevicular fluid (serum transudate), which seeps into the gingival sulcus and contains various proteins and minerals from the bloodstream.
Dark Field Microscopy in Periodontal Microbiology
Dark field microscopy and phase contrast microscopy are valuable techniques in microbiological studies, particularly in the field of periodontal research. These methods allow for the direct observation of bacteria in plaque samples, providing insights into their morphology and motility. This lecture will discuss the principles of dark field microscopy, its applications in periodontal disease assessment, and its limitations.
Dark Field Microscopy
- Definition: Dark field microscopy is a technique that enhances the contrast of unstained, transparent specimens, allowing for the visualization of live microorganisms in their natural state.
- Principle: The method uses a special condenser that directs light at an angle, creating a dark background against which the specimen appears bright. This allows for the observation of motility and morphology without the need for staining.
Applications in Periodontal Microbiology
-
Alternative to Culture Methods:
- Dark field microscopy has been suggested as a rapid alternative to traditional culture methods for assessing bacterial populations in periodontal plaque samples. It allows for immediate observation of bacteria without the time-consuming process of culturing.
-
Assessment of Morphology and Motility:
- The technique enables direct and rapid assessment of the morphology (shape and structure) and motility (movement) of bacteria present in plaque samples. This information can be crucial for understanding the dynamics of periodontal disease.
-
Indication of Periodontal Disease Status:
- Dark field microscopy has been used to indicate the status of periodontal disease and the effectiveness of maintenance programs. By observing the presence and activity of specific bacteria, clinicians can gain insights into the health of periodontal tissues.
Limitations of Dark Field Microscopy
-
Analysis of Major Periodontal Pathogens:
- While dark field microscopy can visualize motile bacteria, it is important to note that many major periodontal pathogens, such as Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, Bacteroides forsythus, Eikenella corrodens, and Eubacterium species, are motile. However, the technique may not provide detailed information about their specific characteristics or pathogenic potential.
-
Differentiation of Treponema Species:
- Dark field microscopy cannot differentiate between species of Treponema, which is a limitation when identifying specific pathogens associated with periodontal disease. This lack of specificity can hinder the ability to tailor treatment based on the exact microbial profile.
-
Limited Quantitative Analysis:
- While dark field microscopy allows for qualitative observations, it may not provide quantitative data on bacterial populations, which can be important for assessing disease severity and treatment outcomes.
Anatomy and Histology of the Periodontium
Gingiva (normal clinical appearance): no muscles, no glands; keratinized
- Color: coral pink but does vary with individuals and races due to cutaneous pigmentation
- Papillary contour: pyramidal shape with one F and one L papilla and the col filling interproximal space to the contact area (col the starting place gingivitis)
- Marginal contour: knife-edged and scalloped
- Texture: stippled (orange-peel texture); blow air to dry out and see where stippling ends to see end of gingiva
- Consistency: firm and resilient (push against it and won’t move); bound to underlying bone
- Sulcus depth: 0-3mm
- Exudate: no exudates (blood, pus, water)
Anatomic and histological structures
Gingival unit: includes periodontium above alveolar crest of bone
a. Alveolar mucosa: histology- non-keratinized, stratified, squamous epithelium, submucosa with glands, loose connective tissue with collagen and elastin, muscles. No epithelial ridges, no stratum granulosum (flattened cells below keratin layer)
b. Mucogingival junction: clinical demarcation between alveolar mucosa and attached gingiva
c. Attached gingiva: histology- keratinized, stratified, squamous epithelium with epithelial ridges (basal cell layer, prickle cell layer, granular cell layer (stratum granulosum), keratin layer); no submucosa
- Dense connective tissue: predominantly collagen, bound to periosteum of bone by Sharpey fibers
- Reticular fibers between collagen fibers and are continuous with reticulin in blood vessels
d. Free gingival groove: demarcation between attached and free gingiva; denotes base of gingival sulcus in normal gingiva; not always seen
e. Free gingival margin: area from free gingival groove to epithelial attachment (up and over ® inside)
- Oral surface: stratified, squamous epithelium with epithelial ridges
- Tooth side surface (sulcular epithelium): non-keratinized, stratified, squamous epithelium with no epithelial ridges (basal cell and prickle cell layers)
f. Gingival sulcus: space bounded by tooth surface, sulcular epithelium, and junctional epithelium; 0-3mm depth; space between epithelium and tooth
g. Dento-gingival junction: combination of epithelial and fibrous attachment
- Junctional epithelium (epithelial attachment): attachment of epithelial cells by hemi-desmosomes and sticky substances (basal lamina- 800-1200 A, DAS-acid mucopolysaccharides, hyaluronic acid, chondroitin sulfate A, C, and B), to enamel, enamel and cementum, or cementum depending on stage of passive eruption. Length ranges from 0.25-1.35mm.
- Fibrous attachment: attachment of collagen fibers (Sharpey’s fibers) into cementum just beneath epithelial attachment; ~ 1mm thick
h. Nerve fibers: myelinated and non-myelinated (for pain) in connective tissue. Both free and specialized endings for pain, touch pressure, and temperature -> proprioception. If dentures, rely on TMJ.
i.Mesh of terminal argyophilic fibers (stain silver), some extending into epithelium
ii Meissner-type corpuscles: pressure sensitive sensory nerve encased in CT
iii.Krause-type corpuscles: temperature receptors
iv. Encapsulated spindles
i. Gingival fibers:
i. Gingivodental group:
- Group I (A): from cementum to free gingival margin
- Group II (B): from cementum to attached gingiva
- Group III (C): from cementum over alveolar crest to periosteum on buccal and lingual plates
ii. Circular (ligamentum circularis): encircles tooth in free gingiva
iii. Transeptal fibers: connects cementum of adjacent teeth, runs over interdental septum of alveolar bone. Separates gingival unit from attachment apparatus.
Transeptal and Group III fibers the major defense against stuff getting into bone and ligament.
2. Attachment apparatus: periodontium below alveolar crest of bone
Periodontal ligament: Sharpey’s fibers (collagen) connecting cementum to bone (bundle bone). Few elastic and oxytalan fibers associated with blood vessels and embedded in cementum in cervical third of tooth. Components divided as follows:
i. Alveolar crest fibers: from cementum just below CEJ apical to alveolar crest of bone
ii.Horizontal fibers: just apical to alveolar crest group, run at right angles to long axis of tooth from cementum horizontally to alveolar bone proper
iii.Oblique fibers: most numerous, from cementum run coronally to alveolar bone proper
iv. Apical fibers: radiate from cementum around apex of root apically to alveolar bone proper, form socket base
v. Interradicular fibers: found only between roots of multi-rooted teeth from cementum to alveolar bone proper
vi. Intermediate plexus: fibers which splice Sharpey’s fibers from bone and cementum
vii. Epithelial Rests of Malassez: cluster and individual epithelial cells close to cementum which are remnants of Hertwig’s epithelial root sheath; potential source of periodontal cysts.
viii. Nerve fibers: myelinated and non-myelinated; abundant supply of sensory free nerve endings capable of transmitting tactile pressure and pain sensation by trigeminal pathway and elongated spindle-like nerve fiber for proprioceptive impulses
Cementum: 45-50% inorganic; 50-55% organic (enamel is 97% inorganic; dentin 70% inorganic)
i. Acellular cementum: no cementocytes; covers dentin (older) in coronal ½ to 2/3 of root, 16-60 mm thick
ii. Cellular cementum: cementocytes; covers dentin in apical ½ to 1/3 of root; also may cover acellular cementum areas in repair areas, 15-200 mm thick
iii. Precementum (cementoid): meshwork of irregularly arranged collagen in surface of cementum where formation starts
iv. Cemento-enamel junction (CEJ): 60-65% of time cementum overlaps enamel; 30% meet end-to-end; 5-10% space between
v. Cementum slower healing than bone or PDL. If expose dentinotubules ® root sensitivity.
Alveolar bone: 65% inorganic, 35% organic
i. Alveolar bone proper (cribriform plate): lamina dura on x-ray; bundle bone receive Sharpey fibers from PDL
ii. Supporting bone: cancellous, trabecular (vascularized) and F and L plates of compact bone
Blood supply to periodontium
i. Alveolar blood vessels (inferior and superior)
A) Interalveolar: actually runs through bone then exits, main supply to alveolar bone and PDL
B) Supraperiosteal: just outside bone, to gingiva and alveolar bone
C) Dental (pulpal): to pulp and periapical area
D) Terminal vessels (supracrestal): anastomose of A and B above beneath the sulcular epithelium
E) PDL gets blood from: most from branches of interalveolar blood vessels from alveolar bone marrow spaces, supraperiosteal vessels when interalveolar vessels not present, pulpal (apical) vessels, supracrestal gingival vessels
ii. Lymphatic drainage: accompany blood vessels to regional lymph nodes (esp. submaxillary group)
Pathogens Implicated in Periodontal Diseases
Periodontal diseases are associated with a variety of pathogenic microorganisms. Below is a list of key pathogens implicated in different forms of periodontal disease, along with their associations:
General Pathogens Associated with Periodontal Diseases
-
Actinobacillus actinomycetemcomitans:
- Strongly associated with destructive periodontal disease.
-
Porphyromonas gingivalis:
- A member of the "black pigmented Bacteroides group" and a significant contributor to periodontal disease.
-
Bacteroides forsythus:
- Associated with chronic periodontitis.
-
Spirochetes (Treponema denticola):
- Implicated in various periodontal conditions.
-
Prevotella intermedia/nigrescens:
- Also belongs to the "black pigmented Bacteroides group" and is associated with several forms of periodontal disease.
-
Fusobacterium nucleatum:
- Plays a role in the progression of periodontal disease.
-
Campylobacter rectus:
- These organisms include members of the new genus Wolinella and are associated with periodontal disease.
Principal Bacteria Associated with Specific Periodontal Diseases
-
Adult Periodontitis:
- Porphyromonas gingivalis
- Prevotella intermedia
- Bacteroides forsythus
- Campylobacter rectus
-
Refractory Periodontitis:
- Bacteroides forsythus
- Porphyromonas gingivalis
- Campylobacter rectus
- Prevotella intermedia
-
Localized Juvenile Periodontitis (LJP):
- Actinobacillus actinomycetemcomitans
- Capnocytophaga
-
Periodontitis in Juvenile Diabetes:
- Capnocytophaga
- Actinobacillus actinomycetemcomitans
-
Pregnancy Gingivitis:
- Prevotella intermedia
-
Acute Necrotizing Ulcerative Gingivitis (ANUG):
- Prevotella intermedia
- Intermediate-sized spirochetes
Acquired Pellicle in the Oral Cavity
The acquired pellicle is a crucial component of oral health, serving as the first line of defense in the oral cavity and playing a significant role in the initial stages of biofilm formation on tooth surfaces. Understanding the composition, formation, and function of the acquired pellicle is essential for dental professionals in managing oral health.
Composition of the Acquired Pellicle
-
Definition:
- The acquired pellicle is a thin, organic layer that coats all surfaces in the oral cavity, including both hard (tooth enamel) and soft tissues (gingiva, mucosa).
-
Components:
- The pellicle consists of more than 180 peptides, proteins,
and glycoproteins, which include:
- Keratins: Structural proteins that provide strength.
- Mucins: Glycoproteins that contribute to the viscosity and protective properties of saliva.
- Proline-rich proteins: Involved in the binding of calcium and phosphate.
- Phosphoproteins: Such as statherin, which helps in maintaining calcium levels and preventing mineral loss.
- Histidine-rich proteins: May play a role in buffering and mineralization.
- These components function as adhesion sites (receptors) for bacteria, facilitating the initial colonization of tooth surfaces.
- The pellicle consists of more than 180 peptides, proteins,
and glycoproteins, which include:
Formation and Maturation of the Acquired Pellicle
-
Rapid Formation:
- The salivary pellicle can be detected on clean enamel surfaces within 1 minute after exposure to saliva. This rapid formation is crucial for protecting the enamel and providing a substrate for bacterial adhesion.
-
Equilibrium State:
- By 2 hours, the pellicle reaches a state of equilibrium between adsorption (the process of molecules adhering to the surface) and detachment. This dynamic balance allows for the continuous exchange of molecules within the pellicle.
-
Maturation:
- Although the initial pellicle formation occurs quickly, further maturation can be observed over several hours. This maturation process involves the incorporation of additional salivary components and the establishment of a more complex structure.
Interaction with Bacteria
-
Bacterial Adhesion:
- Bacteria that adhere to tooth surfaces do not contact the enamel directly; instead, they interact with the acquired enamel pellicle. This interaction is critical for the formation of dental biofilms (plaque).
-
Active Role of the Pellicle:
- The acquired pellicle is not merely a passive adhesion matrix. Many
proteins within the pellicle retain enzymatic activity when
incorporated. Some of these enzymes include:
- Peroxidases: Enzymes that can break down hydrogen peroxide and may have antimicrobial properties.
- Lysozyme: An enzyme that can lyse bacterial cell walls, contributing to the antibacterial defense.
- α-Amylase: An enzyme that breaks down starches and may influence the metabolism of adhering bacteria.
- The acquired pellicle is not merely a passive adhesion matrix. Many
proteins within the pellicle retain enzymatic activity when
incorporated. Some of these enzymes include:
Clinical Significance
-
Role in Oral Health:
- The acquired pellicle plays a protective role by providing a barrier against acids and bacteria, helping to maintain the integrity of tooth enamel and soft tissues.
-
Biofilm Formation:
- Understanding the role of the pellicle in bacterial adhesion is essential for managing plaque-related diseases, such as dental caries and periodontal disease.
-
Preventive Strategies:
- Dental professionals can use knowledge of the acquired pellicle to develop preventive strategies, such as promoting saliva flow and maintaining good oral hygiene practices to minimize plaque accumulation.
-
Therapeutic Applications:
- The enzymatic activities of pellicle proteins can be targeted in the development of therapeutic agents aimed at enhancing oral health and preventing bacterial colonization.