NEET MDS Lessons
Periodontology
Aggressive Periodontitis (formerly Juvenile Periodontitis)
- Historical Names: Previously referred to as periodontosis, deep cementopathia, diseases of eruption, Gottleib’s diseases, and periodontitis marginalis progressive.
- Risk Factors:
- High frequency of Actinobacillus actinomycetemcomitans.
- Immune defects (functional defects of PMNs and monocytes).
- Autoimmunity and genetic factors.
- Environmental factors, including smoking.
- Clinical Features:
- Vertical loss of alveolar bone around the first molars and incisors, typically beginning around puberty.
- Bone loss patterns often described as "target" or "bull" shaped lesions.
Keratinized Gingiva and Attached Gingiva
The gingiva is an essential component of the periodontal tissues, providing support and protection for the teeth. Understanding the characteristics of keratinized gingiva, particularly attached gingiva, is crucial for assessing periodontal health.
Keratinized Gingiva
-
Definition:
- Keratinized gingiva refers to the gingival tissue that is covered by a layer of keratinized epithelium, providing a protective barrier against mechanical and microbial insults.
-
Areas of Keratinized Gingiva:
- Attached Gingiva:
- Extends from the gingival groove to the mucogingival junction.
- Marginal Gingiva:
- The free gingival margin that surrounds the teeth.
- Hard Palate:
- The roof of the mouth, which is also covered by keratinized tissue.
- Attached Gingiva:
Attached Gingiva
-
Location:
- The attached gingiva is the portion of the gingiva that is firmly bound to the underlying alveolar bone.
-
Width of Attached Gingiva:
- The width of attached gingiva varies based on location and can increase with age and in cases of supraerupted teeth.
-
Measurements:
- Greatest Width:
- Found in the incisor region:
- Maxilla: 3.5 mm - 4.5 mm
- Mandible: 3.3 mm - 3.9 mm
- Found in the incisor region:
- Narrowest Width:
- Found in the posterior region:
- Maxillary First Premolar: 1.9 mm
- Mandibular First Premolar: 1.8 mm
- Found in the posterior region:
- Greatest Width:
Clinical Significance
-
Importance of Attached Gingiva:
- The width of attached gingiva is important for periodontal health, as it provides a buffer zone against mechanical forces and helps maintain the integrity of the periodontal attachment.
- Insufficient attached gingiva may lead to increased susceptibility to periodontal disease and gingival recession.
-
Assessment:
- Regular assessment of the width of attached gingiva is essential during periodontal examinations to identify potential areas of concern and to plan appropriate treatment strategies.
Plaque Formation
Dental plaque is a biofilm that forms on the surfaces of teeth and is a key factor in the development of dental caries and periodontal disease. The process of plaque formation can be divided into three major phases:
1. Formation of Pellicle on the Tooth Surface
- Definition: The pellicle is a thin, acellular film that forms on the tooth surface shortly after cleaning.
- Composition: It is primarily composed of salivary glycoproteins and other proteins that are adsorbed onto the enamel surface.
- Function:
- The pellicle serves as a protective barrier for the tooth surface.
- It provides a substrate for bacterial adhesion, facilitating the subsequent stages of plaque formation.
2. Initial Adhesion & Attachment of Bacteria
- Mechanism:
- Bacteria in the oral cavity begin to adhere to the pellicle-coated tooth surface.
- This initial adhesion is mediated by specific interactions between bacterial adhesins (surface proteins) and the components of the pellicle.
- Key Bacterial Species:
- Primary colonizers, such as Streptococcus sanguis and Actinomyces viscosus, are among the first to attach.
- Importance:
- Successful adhesion is crucial for the establishment of plaque, as it allows for the accumulation of additional bacteria.
3. Colonization & Plaque Maturation
- Colonization:
- Once initial bacteria have adhered, they proliferate and create a more complex community.
- Secondary colonizers, including gram-negative anaerobic bacteria, begin to join the biofilm.
- Plaque Maturation:
- As the plaque matures, it develops a three-dimensional structure, with different bacterial species occupying specific niches within the biofilm.
- The matrix of extracellular polysaccharides and salivary glycoproteins becomes more pronounced, providing structural integrity to the plaque.
- Coaggregation:
- Different bacterial species can adhere to one another through coaggregation, enhancing the complexity of the plaque community.
Composition of Plaque
- Matrix Composition:
- Plaque is primarily composed of bacteria embedded in a matrix of salivary glycoproteins and extracellular polysaccharides.
- Implications for Removal:
- The dense and cohesive nature of this matrix makes it difficult to remove plaque through simple rinsing or the use of sprays.
- Effective plaque removal typically requires mechanical means, such as brushing and flossing, to disrupt the biofilm structure.
Anatomy and Histology of the Periodontium
Gingiva (normal clinical appearance): no muscles, no glands; keratinized
- Color: coral pink but does vary with individuals and races due to cutaneous pigmentation
- Papillary contour: pyramidal shape with one F and one L papilla and the col filling interproximal space to the contact area (col the starting place gingivitis)
- Marginal contour: knife-edged and scalloped
- Texture: stippled (orange-peel texture); blow air to dry out and see where stippling ends to see end of gingiva
- Consistency: firm and resilient (push against it and won’t move); bound to underlying bone
- Sulcus depth: 0-3mm
- Exudate: no exudates (blood, pus, water)
Anatomic and histological structures
Gingival unit: includes periodontium above alveolar crest of bone
a. Alveolar mucosa: histology- non-keratinized, stratified, squamous epithelium, submucosa with glands, loose connective tissue with collagen and elastin, muscles. No epithelial ridges, no stratum granulosum (flattened cells below keratin layer)
b. Mucogingival junction: clinical demarcation between alveolar mucosa and attached gingiva
c. Attached gingiva: histology- keratinized, stratified, squamous epithelium with epithelial ridges (basal cell layer, prickle cell layer, granular cell layer (stratum granulosum), keratin layer); no submucosa
- Dense connective tissue: predominantly collagen, bound to periosteum of bone by Sharpey fibers
- Reticular fibers between collagen fibers and are continuous with reticulin in blood vessels
d. Free gingival groove: demarcation between attached and free gingiva; denotes base of gingival sulcus in normal gingiva; not always seen
e. Free gingival margin: area from free gingival groove to epithelial attachment (up and over ® inside)
- Oral surface: stratified, squamous epithelium with epithelial ridges
- Tooth side surface (sulcular epithelium): non-keratinized, stratified, squamous epithelium with no epithelial ridges (basal cell and prickle cell layers)
f. Gingival sulcus: space bounded by tooth surface, sulcular epithelium, and junctional epithelium; 0-3mm depth; space between epithelium and tooth
g. Dento-gingival junction: combination of epithelial and fibrous attachment
- Junctional epithelium (epithelial attachment): attachment of epithelial cells by hemi-desmosomes and sticky substances (basal lamina- 800-1200 A, DAS-acid mucopolysaccharides, hyaluronic acid, chondroitin sulfate A, C, and B), to enamel, enamel and cementum, or cementum depending on stage of passive eruption. Length ranges from 0.25-1.35mm.
- Fibrous attachment: attachment of collagen fibers (Sharpey’s fibers) into cementum just beneath epithelial attachment; ~ 1mm thick
h. Nerve fibers: myelinated and non-myelinated (for pain) in connective tissue. Both free and specialized endings for pain, touch pressure, and temperature -> proprioception. If dentures, rely on TMJ.
i.Mesh of terminal argyophilic fibers (stain silver), some extending into epithelium
ii Meissner-type corpuscles: pressure sensitive sensory nerve encased in CT
iii.Krause-type corpuscles: temperature receptors
iv. Encapsulated spindles
i. Gingival fibers:
i. Gingivodental group:
- Group I (A): from cementum to free gingival margin
- Group II (B): from cementum to attached gingiva
- Group III (C): from cementum over alveolar crest to periosteum on buccal and lingual plates
ii. Circular (ligamentum circularis): encircles tooth in free gingiva
iii. Transeptal fibers: connects cementum of adjacent teeth, runs over interdental septum of alveolar bone. Separates gingival unit from attachment apparatus.
Transeptal and Group III fibers the major defense against stuff getting into bone and ligament.
2. Attachment apparatus: periodontium below alveolar crest of bone
Periodontal ligament: Sharpey’s fibers (collagen) connecting cementum to bone (bundle bone). Few elastic and oxytalan fibers associated with blood vessels and embedded in cementum in cervical third of tooth. Components divided as follows:
i. Alveolar crest fibers: from cementum just below CEJ apical to alveolar crest of bone
ii.Horizontal fibers: just apical to alveolar crest group, run at right angles to long axis of tooth from cementum horizontally to alveolar bone proper
iii.Oblique fibers: most numerous, from cementum run coronally to alveolar bone proper
iv. Apical fibers: radiate from cementum around apex of root apically to alveolar bone proper, form socket base
v. Interradicular fibers: found only between roots of multi-rooted teeth from cementum to alveolar bone proper
vi. Intermediate plexus: fibers which splice Sharpey’s fibers from bone and cementum
vii. Epithelial Rests of Malassez: cluster and individual epithelial cells close to cementum which are remnants of Hertwig’s epithelial root sheath; potential source of periodontal cysts.
viii. Nerve fibers: myelinated and non-myelinated; abundant supply of sensory free nerve endings capable of transmitting tactile pressure and pain sensation by trigeminal pathway and elongated spindle-like nerve fiber for proprioceptive impulses
Cementum: 45-50% inorganic; 50-55% organic (enamel is 97% inorganic; dentin 70% inorganic)
i. Acellular cementum: no cementocytes; covers dentin (older) in coronal ½ to 2/3 of root, 16-60 mm thick
ii. Cellular cementum: cementocytes; covers dentin in apical ½ to 1/3 of root; also may cover acellular cementum areas in repair areas, 15-200 mm thick
iii. Precementum (cementoid): meshwork of irregularly arranged collagen in surface of cementum where formation starts
iv. Cemento-enamel junction (CEJ): 60-65% of time cementum overlaps enamel; 30% meet end-to-end; 5-10% space between
v. Cementum slower healing than bone or PDL. If expose dentinotubules ® root sensitivity.
Alveolar bone: 65% inorganic, 35% organic
i. Alveolar bone proper (cribriform plate): lamina dura on x-ray; bundle bone receive Sharpey fibers from PDL
ii. Supporting bone: cancellous, trabecular (vascularized) and F and L plates of compact bone
Blood supply to periodontium
i. Alveolar blood vessels (inferior and superior)
A) Interalveolar: actually runs through bone then exits, main supply to alveolar bone and PDL
B) Supraperiosteal: just outside bone, to gingiva and alveolar bone
C) Dental (pulpal): to pulp and periapical area
D) Terminal vessels (supracrestal): anastomose of A and B above beneath the sulcular epithelium
E) PDL gets blood from: most from branches of interalveolar blood vessels from alveolar bone marrow spaces, supraperiosteal vessels when interalveolar vessels not present, pulpal (apical) vessels, supracrestal gingival vessels
ii. Lymphatic drainage: accompany blood vessels to regional lymph nodes (esp. submaxillary group)
Gingivitis
Gingivitis is an inflammatory condition of the gingiva that can progress through several distinct stages. Understanding these stages is crucial for dental professionals in diagnosing and managing periodontal disease effectively. This lecture will outline the four stages of gingivitis, highlighting the key pathological changes that occur at each stage.
I. Initial Lesion
- Characteristics:
- Increased Permeability: The microvascular bed in the gingival tissues becomes more permeable, allowing for the passage of fluids and immune cells.
- Increased GCF Flow: There is an increase in the flow of gingival crevicular fluid (GCF), which is indicative of inflammation and immune response.
- PMN Cell Migration: The migration of
polymorphonuclear leukocytes (PMNs) is facilitated by various adhesion
molecules, including:
- Intercellular Cell Adhesion Molecule 1 (ICAM-1)
- E-selectin (ELAM-1) in the dentogingival vasculature.
- Clinical Implications: This stage marks the beginning of the inflammatory response, where the body attempts to combat the initial bacterial insult.
II. Early Lesion
-
Characteristics:
- Leukocyte Infiltration: There is significant infiltration of leukocytes, particularly lymphocytes, into the connective tissue of the junctional epithelium.
- Fibroblast Degeneration: Several fibroblasts within the lesion exhibit signs of degeneration, indicating tissue damage.
- Proliferation of Basal Cells: The basal cells of the junctional and sulcular epithelium begin to proliferate, which may be a response to the inflammatory process.
-
Clinical Implications: This stage represents a transition from initial inflammation to more pronounced tissue changes, with the potential for further progression if not managed.
III. Established Lesion
-
Characteristics:
- Predominance of Plasma Cells and B Lymphocytes: There is a marked increase in plasma cells and B lymphocytes, indicating a more advanced immune response.
- Increased Collagenolytic Activity: The activity of collagen-degrading enzymes increases, leading to the breakdown of collagen fibers in the connective tissue.
- B Cell Subclasses: The B cells present in the established lesion are predominantly of the IgG1 and IgG3 subclasses, which are important for the immune response.
-
Clinical Implications: This stage is characterized by chronic inflammation, and if left untreated, it can lead to further tissue destruction and the transition to advanced lesions.
IV. Advanced Lesion
-
Characteristics:
- Loss of Connective Tissue Attachment: There is significant loss of connective tissue attachment to the teeth, which can lead to periodontal pocket formation.
- Alveolar Bone Loss: Extensive damage occurs to the alveolar bone, contributing to the overall loss of periodontal support.
- Extensive Damage to Collagen Fibers: The collagen fibers in the gingival tissues are extensively damaged, further compromising the structural integrity of the gingiva.
- Predominance of Plasma Cells: Plasma cells remain predominant, indicating ongoing immune activity and inflammation.
-
Clinical Implications: This stage represents the transition from gingivitis to periodontitis, where irreversible damage can occur. Early intervention is critical to prevent further progression and loss of periodontal support.
Automated Probing Systems
Automated probing systems have become increasingly important in periodontal assessments, providing enhanced accuracy and efficiency in measuring pocket depths and clinical attachment levels. This lecture will focus on the Florida Probe System, the Foster-Miller Probe, and the Toronto Automated Probe, discussing their features, advantages, and limitations.
1. Florida Probe System
-
Overview: The Florida Probe System is an automated probing system designed to facilitate accurate periodontal assessments. It consists of several components:
- Probe Handpiece: The instrument used to measure pocket depths.
- Digital Readout: Displays measurements in real-time.
- Foot Switch: Allows for hands-free operation.
- Computer Interface: Connects the probe to a computer for data management.
-
Specifications:
- Probe Diameter: The end of the probe is 0.4 mm in diameter, allowing for precise measurements in periodontal pockets.
-
Advantages:
- Constant Probing Force: The system applies a consistent force during probing, reducing variability in measurements.
- Precise Electronic Measurement: Provides accurate and reproducible measurements of pocket depths.
- Computer Storage of Data: Enables easy storage, retrieval, and analysis of patient data, facilitating better record-keeping and tracking of periodontal health over time.
-
Disadvantages:
- Lack of Tactile Sensitivity: The automated nature of the probe means that clinicians do not receive tactile feedback, which can be important for assessing tissue health.
- Fixed Force Setting: The use of a fixed force setting throughout the mouth may not account for variations in tissue condition, potentially leading to inaccurate measurements or patient discomfort.
2. Foster-Miller Probe
-
Overview: The Foster-Miller Probe is another automated probing system that offers unique features for periodontal assessment.
-
Capabilities:
- Pocket Depth Measurement: This probe can measure pocket depths effectively.
- Detection of the Cemento-Enamel Junction (CEJ): It is capable of coupling pocket depth measurements with the detection of the CEJ, providing valuable information about clinical attachment levels.
3. Toronto Automated Probe
-
Overview: The Toronto Automated Probe is designed to enhance the accuracy of probing in periodontal assessments.
-
Specifications:
- Probing Mechanism: The sulcus is probed with a 0.5 mm nickel titanium wire that is extended under air pressure, allowing for gentle probing.
- Angular Control: The system controls angular discrepancies using a mercury tilt sensor, which limits angulation within ±30 degrees. This feature helps maintain consistent probing angles.
-
Limitations:
- Reproducible Positioning: The probe requires reproducible positioning of the patient’s head, which can be challenging in some clinical settings.
- Limited Access: The design may not easily accommodate measurements of second or third molars, potentially limiting its use in comprehensive periodontal assessments.
Effects of Smoking on the Etiology and Pathogenesis of Periodontal Disease
Smoking is a significant risk factor for the development and progression of periodontal disease. It affects various aspects of periodontal health, including microbiology, immunology, and physiology. Understanding these effects is crucial for dental professionals in managing patients with periodontal disease, particularly those who smoke.
Etiologic Factors and the Impact of Smoking
-
Microbiology
- Plaque Accumulation:
- Smoking does not affect the rate of plaque accumulation on teeth. This means that smokers may have similar levels of plaque as non-smokers.
- Colonization of Periodontal Pathogens:
- Smoking increases the colonization of shallow periodontal pockets by periodontal pathogens. This can lead to an increased risk of periodontal disease.
- There are higher levels of periodontal pathogens found in deep periodontal pockets among smokers, contributing to the severity of periodontal disease.
- Plaque Accumulation:
-
Immunology
- Neutrophil Function:
- Smoking alters neutrophil chemotaxis (the movement of neutrophils towards infection), phagocytosis (the process by which neutrophils engulf and destroy pathogens), and the oxidative burst (the rapid release of reactive oxygen species to kill bacteria).
- Cytokine Levels:
- Increased levels of pro-inflammatory cytokines such as Tumor Necrosis Factor-alpha (TNF-α) and Prostaglandin E2 (PGE2) are found in the gingival crevicular fluid (GCF) of smokers. These cytokines play a role in inflammation and tissue destruction.
- Collagenase and Elastase Production:
- There is an increase in neutrophil collagenase and elastase in GCF, which can contribute to the breakdown of connective tissue and exacerbate periodontal tissue destruction.
- Monocyte Response:
- Smoking enhances the production of PGE2 by monocytes in response to lipopolysaccharides (LPS), further promoting inflammation and tissue damage.
- Neutrophil Function:
-
Physiology
- Gingival Blood Vessels:
- Smoking leads to a decrease in gingival blood vessels, which can impair the delivery of immune cells and nutrients to the periodontal tissues, exacerbating inflammation.
- Gingival Crevicular Fluid (GCF) Flow:
- There is a reduction in GCF flow and bleeding on probing, even in the presence of increased inflammation. This can mask the clinical signs of periodontal disease, making diagnosis more challenging.
- Subgingival Temperature:
- Smoking is associated with a decrease in subgingival temperature, which may affect the metabolic activity of periodontal pathogens.
- Recovery from Local Anesthesia:
- Smokers may require a longer time to recover from local anesthesia, which can complicate dental procedures and patient management.
- Gingival Blood Vessels:
Clinical Implications
-
Increased Risk of Periodontal Disease:
- Smokers are at a higher risk for developing periodontal disease due to the combined effects of altered microbial colonization, impaired immune response, and physiological changes in the gingival tissues.
-
Challenges in Diagnosis:
- The reduced bleeding on probing and altered GCF flow in smokers can lead to underdiagnosis or misdiagnosis of periodontal disease. Dental professionals must be vigilant in assessing periodontal health in smokers.
-
Treatment Considerations:
- Smoking cessation should be a key component of periodontal treatment plans. Educating patients about the effects of smoking on periodontal health can motivate them to quit.
- Treatment may need to be more aggressive in smokers due to the increased severity of periodontal disease and the altered healing response.
-
Monitoring and Maintenance:
- Regular monitoring of periodontal health is essential for smokers, as they may experience more rapid disease progression. Tailored maintenance programs should be implemented to address their specific needs.