Talk to us?

Periodontology - NEETMDS- courses
NEET MDS Lessons
Periodontology

Erythema Multiforme

  • Characteristics: Erythema multiforme presents with "target" or "bull's eye" lesions, often associated with:
    • Etiologic Factors:
      • Herpes simplex infection.
      • Mycoplasma infection.
      • Drug reactions (e.g., sulfonamides, penicillins, phenylbutazone, phenytoin).

Gingivitis

Gingivitis is an inflammatory condition of the gingiva that can progress through several distinct stages. Understanding these stages is crucial for dental professionals in diagnosing and managing periodontal disease effectively. This lecture will outline the four stages of gingivitis, highlighting the key pathological changes that occur at each stage.

I. Initial Lesion

  • Characteristics:
    • Increased Permeability: The microvascular bed in the gingival tissues becomes more permeable, allowing for the passage of fluids and immune cells.
    • Increased GCF Flow: There is an increase in the flow of gingival crevicular fluid (GCF), which is indicative of inflammation and immune response.
    • PMN Cell Migration: The migration of polymorphonuclear leukocytes (PMNs) is facilitated by various adhesion molecules, including:
      • Intercellular Cell Adhesion Molecule 1 (ICAM-1)
      • E-selectin (ELAM-1) in the dentogingival vasculature.
  • Clinical Implications: This stage marks the beginning of the inflammatory response, where the body attempts to combat the initial bacterial insult.

II. Early Lesion

  • Characteristics:

    • Leukocyte Infiltration: There is significant infiltration of leukocytes, particularly lymphocytes, into the connective tissue of the junctional epithelium.
    • Fibroblast Degeneration: Several fibroblasts within the lesion exhibit signs of degeneration, indicating tissue damage.
    • Proliferation of Basal Cells: The basal cells of the junctional and sulcular epithelium begin to proliferate, which may be a response to the inflammatory process.
  • Clinical Implications: This stage represents a transition from initial inflammation to more pronounced tissue changes, with the potential for further progression if not managed.

III. Established Lesion

  • Characteristics:

    • Predominance of Plasma Cells and B Lymphocytes: There is a marked increase in plasma cells and B lymphocytes, indicating a more advanced immune response.
    • Increased Collagenolytic Activity: The activity of collagen-degrading enzymes increases, leading to the breakdown of collagen fibers in the connective tissue.
    • B Cell Subclasses: The B cells present in the established lesion are predominantly of the IgG1 and IgG3 subclasses, which are important for the immune response.
  • Clinical Implications: This stage is characterized by chronic inflammation, and if left untreated, it can lead to further tissue destruction and the transition to advanced lesions.

IV. Advanced Lesion

  • Characteristics:

    • Loss of Connective Tissue Attachment: There is significant loss of connective tissue attachment to the teeth, which can lead to periodontal pocket formation.
    • Alveolar Bone Loss: Extensive damage occurs to the alveolar bone, contributing to the overall loss of periodontal support.
    • Extensive Damage to Collagen Fibers: The collagen fibers in the gingival tissues are extensively damaged, further compromising the structural integrity of the gingiva.
    • Predominance of Plasma Cells: Plasma cells remain predominant, indicating ongoing immune activity and inflammation.
  • Clinical Implications: This stage represents the transition from gingivitis to periodontitis, where irreversible damage can occur. Early intervention is critical to prevent further progression and loss of periodontal support.

Automated Probing Systems

Automated probing systems have become increasingly important in periodontal assessments, providing enhanced accuracy and efficiency in measuring pocket depths and clinical attachment levels. This lecture will focus on the Florida Probe System, the Foster-Miller Probe, and the Toronto Automated Probe, discussing their features, advantages, and limitations.

1. Florida Probe System

  • Overview: The Florida Probe System is an automated probing system designed to facilitate accurate periodontal assessments. It consists of several components:

    • Probe Handpiece: The instrument used to measure pocket depths.
    • Digital Readout: Displays measurements in real-time.
    • Foot Switch: Allows for hands-free operation.
    • Computer Interface: Connects the probe to a computer for data management.
  • Specifications:

    • Probe Diameter: The end of the probe is 0.4 mm in diameter, allowing for precise measurements in periodontal pockets.
  • Advantages:

    • Constant Probing Force: The system applies a consistent force during probing, reducing variability in measurements.
    • Precise Electronic Measurement: Provides accurate and reproducible measurements of pocket depths.
    • Computer Storage of Data: Enables easy storage, retrieval, and analysis of patient data, facilitating better record-keeping and tracking of periodontal health over time.
  • Disadvantages:

    • Lack of Tactile Sensitivity: The automated nature of the probe means that clinicians do not receive tactile feedback, which can be important for assessing tissue health.
    • Fixed Force Setting: The use of a fixed force setting throughout the mouth may not account for variations in tissue condition, potentially leading to inaccurate measurements or patient discomfort.

2. Foster-Miller Probe

  • Overview: The Foster-Miller Probe is another automated probing system that offers unique features for periodontal assessment.

  • Capabilities:

    • Pocket Depth Measurement: This probe can measure pocket depths effectively.
    • Detection of the Cemento-Enamel Junction (CEJ): It is capable of coupling pocket depth measurements with the detection of the CEJ, providing valuable information about clinical attachment levels.

3. Toronto Automated Probe

  • Overview: The Toronto Automated Probe is designed to enhance the accuracy of probing in periodontal assessments.

  • Specifications:

    • Probing Mechanism: The sulcus is probed with a 0.5 mm nickel titanium wire that is extended under air pressure, allowing for gentle probing.
    • Angular Control: The system controls angular discrepancies using a mercury tilt sensor, which limits angulation within ±30 degrees. This feature helps maintain consistent probing angles.
  • Limitations:

    • Reproducible Positioning: The probe requires reproducible positioning of the patient’s head, which can be challenging in some clinical settings.
    • Limited Access: The design may not easily accommodate measurements of second or third molars, potentially limiting its use in comprehensive periodontal assessments.

Bone Graft Materials

Bone grafting is a critical procedure in periodontal and dental surgery, aimed at restoring lost bone and supporting the regeneration of periodontal tissues. Various materials can be used for bone grafting, each with unique properties and applications.

A. Osseous Coagulum

  • Composition: Osseous coagulum is a mixture of bone dust and blood. It is created using small particles ground from cortical bone.
  • Sources: Bone dust can be obtained from various anatomical sites, including:
    • Lingual ridge of the mandible
    • Exostoses
    • Edentulous ridges
    • Bone distal to terminal teeth
  • Application: This material is used in periodontal surgery to promote healing and regeneration of bone in areas affected by periodontal disease.

B. Bioactive Glass

  • Composition: Bioactive glass consists of sodium and calcium salts, phosphates, and silicon dioxide.
  • Function: It promotes bone regeneration by forming a bond with surrounding bone and stimulating cellular activity.

C. HTR Polymer

  • Composition: HTR Polymer is a non-resorbable, microporous, biocompatible composite made from polymethyl methacrylate (PMMA) and polyhydroxymethacrylate.
  • Application: This material is used in various dental and periodontal applications due to its biocompatibility and structural properties.

D. Other Bone Graft Materials

  • Sclera: Used as a graft material due to its collagen content and biocompatibility.
  • Cartilage: Can be used in certain grafting procedures, particularly in reconstructive surgery.
  • Plaster of Paris: Occasionally used in bone grafting, though less common due to its non-biological nature.
  • Calcium Phosphate Biomaterials: These materials are osteoconductive and promote bone healing.
  • Coral-Derived Materials: Natural coral can be processed to create a scaffold for bone regeneration.

Bacterial Properties Involved in Evasion of Host Defense Mechanisms

Bacteria have evolved various strategies to evade the host's immune defenses, allowing them to persist and cause disease. Understanding these mechanisms is crucial for developing effective treatments and preventive measures against bacterial infections, particularly in the context of periodontal disease. This lecture will explore the bacterial species involved, their properties, and the biological effects of these properties on host defense mechanisms.

Host Defense Mechanisms and Bacterial Evasion Strategies

  1. Specific Antibody Evasion

    • Bacterial Species:
      • Porphyromonas gingivalis
      • Prevotella intermedia
      • Prevotella melaninogenica
      • Capnocytophaga spp.
    • Bacterial Property:
      • IgA- and IgG-degrading proteases
    • Biologic Effect:
      • Degradation of specific antibodies, which impairs the host's ability to mount an effective immune response against these bacteria.
  2. Evasion of Polymorphonuclear Leukocytes (PMNs)

    • Bacterial Species:
      • Aggregatibacter actinomycetemcomitans
      • Fusobacterium nucleatum
      • Porphyromonas gingivalis
      • Treponema denticola
    • Bacterial Properties:
      • Leukotoxin: A toxin that can induce apoptosis in PMNs.
      • Heat-sensitive surface protein: May interfere with immune recognition.
      • Capsule: A protective layer that inhibits phagocytosis.
      • Inhibition of superoxide production: Reduces the oxidative burst necessary for bacterial killing.
    • Biologic Effects:
      • Inhibition of PMN function, leading to decreased bacterial killing.
      • Induction of apoptosis (programmed cell death) in PMNs, reducing the number of immune cells available to fight infection.
      • Inhibition of phagocytosis, allowing bacteria to evade clearance.
  3. Evasion of Lymphocytes

    • Bacterial Species:
      • Aggregatibacter actinomycetemcomitans
      • Fusobacterium nucleatum
      • Tannerella forsythia
      • Prevotella intermedia
    • Bacterial Properties:
      • Leukotoxin: Induces apoptosis in lymphocytes.
      • Cytolethal distending toxin: Affects cell cycle progression and induces cell death.
      • Heat-sensitive surface protein: May interfere with immune recognition.
      • Cytotoxin: Directly damages immune cells.
    • Biologic Effects:
      • Killing of mature B and T cells, leading to a weakened adaptive immune response.
      • Nonlethal suppression of lymphocyte activity, impairing the immune response.
      • Impairment of lymphocyte function by arresting the cell cycle, leading to decreased responses to antigens and mitogens.
      • Induction of apoptosis in mononuclear cells and lymphocytes, further reducing immune capacity.
  4. Inhibition of Interleukin-8 (IL-8) Production

    • Bacterial Species:
      • Porphyromonas gingivalis
    • Bacterial Property:
      • Inhibition of IL-8 production by epithelial cells.
    • Biologic Effect:
      • Impairment of PMN response to bacteria, leading to reduced recruitment and activation of neutrophils at the site of infection.

Assessing New Attachment in Periodontal Therapy

Assessing new attachment following periodontal therapy is crucial for evaluating treatment outcomes and understanding the healing process. However, various methods of assessment have limitations that must be considered. This lecture will discuss the reliability of different assessment methods for new attachment, including periodontal probing, radiographic analysis, and histologic methods.

1. Periodontal Probing

  • Assessment Method: Periodontal probing is commonly used to measure probing depth and attachment levels before and after therapy.

  • Limitations:

    • Coronal Positioning of Probe Tip: After therapy, when the inflammatory lesion is resolved, the probe tip may stop coronal to the apical termination of the epithelium. This can lead to misleading interpretations of attachment gain.
    • Infrabony Defects: Following treatment of infrabony defects, new bone may form so close to the tooth surface that the probe cannot penetrate. This can result in a false impression of improved attachment levels.
    • Interpretation of Results: A gain in probing attachment level does not necessarily indicate a true gain of connective tissue attachment. Instead, it may reflect improved health of the surrounding tissues, which increases resistance to probe penetration.

2. Radiographic Analysis and Reentry Operations

  • Assessment Method: Radiographic analysis involves comparing radiographs taken before and after therapy to evaluate changes in bone levels. Reentry operations allow for direct inspection of the treated area.

  • Limitations:

    • Bone Fill vs. New Attachment: While radiographs can provide evidence of new bone formation (bone fill), they do not document the formation of new root cementum or a new periodontal ligament. Therefore, radiographic evidence alone cannot confirm the establishment of new attachment.

3. Histologic Methods

  • Assessment Method: Histologic analysis involves examining tissue samples under a microscope to assess the formation of new attachment, including new cementum and periodontal ligament.

  • Advantages:

    • Validity: Histologic methods are considered the only valid approach to assess the formation of new attachment accurately.
  • Limitations:

    • Pre-Therapy Assessment: Accurate assessment of the attachment level prior to therapy is essential for histologic analysis. If the initial attachment level cannot be determined with certainty, it may compromise the validity of the findings.

Components of Gingival Crevicular Fluid (GCF) and Matrix Metalloproteinases (MMPs)

Gingival crevicular fluid (GCF) is a serum-like fluid found in the gingival sulcus that plays a significant role in periodontal health and disease. Understanding its composition, particularly glucose and protein content, as well as the role of matrix metalloproteinases (MMPs) in tissue remodeling, is essential for dental professionals.

Composition of Gingival Crevicular Fluid (GCF)

  1. Glucose and Hexosamines:

    • GCF contains compounds such as glucose, hexosamines, and hexuronic acid.
    • Glucose Levels:
      • Blood glucose levels do not correlate with GCF glucose levels; in fact, glucose concentration in GCF is three to four times greater than that in serum.
      • This elevated glucose level is interpreted as a result of the metabolic activity of adjacent tissues and the influence of local microbial flora.
  2. Protein Content:

    • The total protein content of GCF is significantly less than that of serum.
    • This difference in protein concentration reflects the unique environment of the gingival sulcus and the specific functions of GCF in periodontal health.

Matrix Metalloproteinases (MMPs)

  1. Definition and Function:

    • MMPs are a family of proteolytic enzymes that degrade extracellular matrix molecules, including collagen, gelatin, and elastin.
    • They are produced by various cell types, including:
      • Neutrophils
      • Macrophages
      • Fibroblasts
      • Epithelial cells
      • Osteoblasts and osteoclasts
  2. Classification:

    • MMPs are classified based on their substrate specificity, although it is now recognized that many MMPs can degrade multiple substrates. The classification includes:
      • Collagenases: e.g., MMP-1 and MMP-8 (break down collagen)
      • Gelatinases: Type IV collagenases
      • Stromelysins
      • Matrilysins
      • Membrane-type metalloproteinases
      • Others
  3. Activation and Inhibition:

    • MMPs are secreted in an inactive form (latent) and require proteolytic cleavage for activation. This activation is facilitated by proteases such as cathepsin G produced by neutrophils.
    • Inhibitors: MMPs are regulated by proteinase inhibitors, which possess anti-inflammatory properties. Key inhibitors include:
      • Serum Inhibitors:
        • α1-antitrypsin
        • α2-macroglobulin (produced by the liver, inactivates various proteinases)
      • Tissue Inhibitors:
        • Tissue inhibitors of metalloproteinases (TIMPs), with TIMP-1 being particularly important in periodontal disease.
    • Antibiotic Inhibition: MMPs can also be inhibited by tetracycline antibiotics, leading to the development of sub-antimicrobial formulations of doxycycline as a systemic adjunctive treatment for periodontitis, exploiting its anti-MMP properties.

Merkel Cells

  1. Location and Function:
    • Merkel cells are located in the deeper layers of the epithelium and are associated with nerve endings.
    • They are connected to adjacent cells by desmosomes and are identified as tactile receptors.
    • These cells play a role in the sensation of touch and pressure, contributing to the sensory functions of the oral mucosa.

Clinical Implications

  1. GCF Analysis:

    • The composition of GCF, including glucose and protein levels, can provide insights into the inflammatory status of the periodontal tissues and the presence of periodontal disease.
  2. Role of MMPs in Periodontal Disease:

    • MMPs are involved in the remodeling of periodontal tissues during inflammation and disease progression. Understanding their regulation and activity is crucial for developing therapeutic strategies.
  3. Therapeutic Applications:

    • The use of sub-antimicrobial doxycycline as an adjunctive treatment for periodontitis highlights the importance of MMP inhibition in managing periodontal disease.
  4. Sensory Function:

    • The presence of Merkel cells in the gingival epithelium underscores the importance of sensory feedback in maintaining oral health and function.

Explore by Exams