Talk to us?

Periodontology - NEETMDS- courses
NEET MDS Lessons
Periodontology

Localized Aggressive Periodontitis and Necrotizing Ulcerative Gingivitis

Localized Aggressive Periodontitis (LAP)

Localized aggressive periodontitis, previously known as localized juvenile periodontitis, is characterized by specific microbial profiles and clinical features.

  • Microbiota Composition:
    • The microbiota associated with LAP is predominantly composed of:
      • Gram-Negative, Capnophilic, and Anaerobic Rods.
    • Key Organisms:
      • Actinobacillus actinomycetemcomitans: The main organism involved in LAP.
      • Other significant organisms include:
        • Porphyromonas gingivalis
        • Eikenella corrodens
        • Campylobacter rectus
        • Bacteroides capillus
        • Spirochetes (various species).
    • Viral Associations:
      • Herpes viruses, including Epstein-Barr Virus-1 (EBV-1) and Human Cytomegalovirus (HCMV), have also been associated with LAP.

Necrotizing Ulcerative Gingivitis (NUG)

  • Microbial Profile:
    • NUG is characterized by high levels of:
      • Prevotella intermedia
      • Spirochetes (various species).
  • Clinical Features:
    • NUG presents with necrosis of the gingival tissue, pain, and ulceration, often accompanied by systemic symptoms.

Microbial Shifts in Periodontal Disease

When comparing the microbiota across different states of periodontal health, a distinct microbial shift can be identified as the disease progresses from health to gingivitis to periodontitis:

  1. From Gram-Positive to Gram-Negative:

    • Healthy gingival sites are predominantly colonized by gram-positive bacteria, while diseased sites show an increase in gram-negative bacteria.
  2. From Cocci to Rods (and Later to Spirochetes):

    • In health, cocci (spherical bacteria) are prevalent. As the disease progresses, there is a shift towards rod-shaped bacteria, and in advanced stages, spirochetes become more prominent.
  3. From Non-Motile to Motile Organisms:

    • Healthy sites are often dominated by non-motile bacteria, while motile organisms increase in number as periodontal disease develops.
  4. From Facultative Anaerobes to Obligate Anaerobes:

    • In health, facultative anaerobes (which can survive with or without oxygen) are common. In contrast, obligate anaerobes (which thrive in the absence of oxygen) become more prevalent in periodontal disease.
  5. From Fermenting to Proteolytic Species:

    • The microbial community shifts from fermentative bacteria, which primarily metabolize carbohydrates, to proteolytic species that break down proteins, contributing to tissue destruction and inflammation.

Finger Rests in Dental Instrumentation

Use of finger rests is essential for providing stability and control during procedures. A proper finger rest allows for more precise movements and reduces the risk of hand fatigue.

Importance of Finger Rests

  • Stabilization: Finger rests serve to stabilize the hand and the instrument, providing a firm fulcrum that enhances control during procedures.
  • Precision: A stable finger rest allows for more accurate instrumentation, which is crucial for effective treatment and patient safety.
  • Reduced Fatigue: By providing support, finger rests help reduce hand and wrist fatigue, allowing the clinician to work more comfortably for extended periods.

Types of Finger Rests

  1. Conventional Finger Rest:

    • Description: The finger rest is established on the tooth surfaces immediately adjacent to the working area.
    • Application: This is the most common type of finger rest, providing direct support for the hand while working on a specific tooth. It allows for precise movements and control during instrumentation.
  2. Cross Arch Finger Rest:

    • Description: The finger rest is established on the tooth surfaces on the other side of the same arch.
    • Application: This technique is useful when working on teeth that are not directly adjacent to the finger rest. It provides stability while allowing access to the working area from a different angle.
  3. Opposite Arch Finger Rest:

    • Description: The finger rest is established on the tooth surfaces of the opposite arch (e.g., using a mandibular arch finger rest for instrumentation on the maxillary arch).
    • Application: This type of finger rest is particularly beneficial when accessing the maxillary teeth from the mandibular arch, providing a stable fulcrum while maintaining visibility and access.
  4. Finger on Finger Rest:

    • Description: The finger rest is established on the index finger or thumb of the non-operating hand.
    • Application: This technique is often used in areas where traditional finger rests are difficult to establish, such as in the posterior regions of the mouth. It allows for flexibility and adaptability in positioning.

Gingival Crevicular Fluid (GCF)

Gingival crevicular fluid is an inflammatory exudate found in the gingival sulcus. It plays a significant role in periodontal health and disease.

A. Characteristics of GCF

  • Glucose Concentration: The glucose concentration in GCF is 3-4 times greater than that in serum, indicating increased metabolic activity in inflamed tissues.
  • Protein Content: The total protein content of GCF is much less than that of serum, reflecting its role as an inflammatory exudate.
  • Inflammatory Nature: GCF is present in clinically normal sulci due to the constant low-grade inflammation of the gingiva.

B. Drugs Excreted Through GCF

  • Tetracyclines and Metronidazole: These antibiotics are known to be excreted through GCF, making them effective for localized periodontal therapy.

C. Collection Methods for GCF

GCF can be collected using various techniques, including:

  1. Absorbing Paper Strips/Blotter/Periopaper: These strips absorb fluid from the sulcus and are commonly used for GCF collection.
  2. Twisted Threads: Placing twisted threads around and into the sulcus can help collect GCF.
  3. Micropipettes: These can be used for precise collection of GCF in research settings.
  4. Intra-Crevicular Washings: Flushing the sulcus with a saline solution can help collect GCF for analysis.

Modified Widman Flap Procedure

The modified Widman flap procedure is a surgical technique used in periodontal therapy to treat periodontal pockets while preserving the surrounding tissues and promoting healing. This lecture will discuss the advantages and disadvantages of the modified Widman flap, its indications, and the procedural steps involved.

Advantages of the Modified Widman Flap Procedure

  1. Intimate Postoperative Adaptation:

    • The main advantage of the modified Widman flap procedure is the ability to establish a close adaptation of healthy collagenous connective tissues and normal epithelium to all tooth surfaces. This promotes better healing and integration of tissues post-surgery
  2. Feasibility for Bone Implantation:

    • The modified Widman flap procedure is advantageous over curettage, particularly when the implantation of bone and other substances is planned. This allows for better access and preparation of the surgical site for grafting .
  3. Conservation of Bone and Optimal Coverage:

    • Compared to conventional reverse bevel flap surgery, the modified Widman flap conserves bone and provides optimal coverage of root surfaces by soft tissues. This results in:
      • A more aesthetically pleasing outcome.
      • A favorable environment for oral hygiene.
      • Potentially less root sensitivity and reduced risk of root caries.
      • More effective pocket closure compared to pocket elimination procedures .
  4. Minimized Gingival Recession:

    • When reattachment or minimal gingival recession is desired, the modified Widman flap is preferred over subgingival curettage, making it a suitable choice for treating deeper pockets (greater than 5 mm) and other complex periodontal conditions.

Disadvantages of the Modified Widman Flap Procedure

  1. Interproximal Architecture:
    • One apparent disadvantage is the potential for flat or concave interproximal architecture immediately following the removal of the surgical dressing, particularly in areas with interproximal bony craters. This can affect the aesthetic outcome and may require further management .

Indications for the Modified Widman Flap Procedure

  • Deep Pockets: Pockets greater than 5 mm, especially in the anterior and buccal maxillary posterior regions.
  • Intrabony Pockets and Craters: Effective for treating pockets with vertical bone loss.
  • Furcation Involvement: Suitable for managing periodontal disease in multi-rooted teeth.
  • Bone Grafts: Facilitates the placement of bone grafts during surgery.
  • Severe Root Sensitivity: Indicated when root sensitivity is a significant concern.

Procedure Overview

  1. Incisions and Flap Reflection:

    • Vertical Incisions: Made to access the periodontal pocket.
    • Crevicular Incision: A horizontal incision along the gingival margin.
    • Horizontal Incision: Undermines and removes the collar of tissue around the teeth.
  2. Conservative Debridement:

    • Flap is reflected just beyond the alveolar crest.
    • Careful removal of all plaque and calculus while preserving the root surface.
    • Frequent sterile saline irrigation is used to maintain a clean surgical field.
  3. Preservation of Proximal Bone Surface:

    • The proximal bone surface is preserved and not curetted, allowing for better healing and adaptation of the flap.
    • Exact flap adaptation is achieved with full coverage of the bone.
  4. Suturing:

    • Suturing is aimed at achieving primary union of the proximal flap projections, ensuring proper healing and tissue integration.

Postoperative Care

  • Antibiotic Ointment and Periodontal Dressing: Traditionally, antibiotic ointment was applied over sutures, and a periodontal dressing was placed. However, these practices are often omitted today.
  • Current Recommendations: Patients are advised not to disturb the surgical area and to use a chlorhexidine mouth rinse every 12 hours for effective plaque control and to promote healing.


--------------

 

 

Neutrophil Disorders Associated with Periodontal Diseases

Neutrophils play a crucial role in the immune response, particularly in combating infections, including those associated with periodontal diseases. Various neutrophil disorders can significantly impact periodontal health, leading to increased susceptibility to periodontal diseases. This lecture will explore the relationship between neutrophil disorders and specific periodontal diseases.

Neutrophil Disorders

  1. Diabetes Mellitus

    • Description: A metabolic disorder characterized by high blood sugar levels due to insulin resistance or deficiency.
    • Impact on Neutrophils: Diabetes can impair neutrophil function, including chemotaxis, phagocytosis, and the oxidative burst, leading to an increased risk of periodontal infections.
  2. Papillon-Lefevre Syndrome

    • Description: A rare genetic disorder characterized by palmoplantar keratoderma and severe periodontitis.
    • Impact on Neutrophils: Patients exhibit neutrophil dysfunction, leading to early onset and rapid progression of periodontal disease.
  3. Down�s Syndrome

    • Description: A genetic disorder caused by the presence of an extra chromosome 21, leading to various developmental and health issues.
    • Impact on Neutrophils: Individuals with Down�s syndrome often have impaired neutrophil function, which contributes to an increased prevalence of periodontal disease.
  4. Chediak-Higashi Syndrome

    • Description: A rare genetic disorder characterized by immunodeficiency, partial oculocutaneous albinism, and neurological problems.
    • Impact on Neutrophils: This syndrome results in defective neutrophil chemotaxis and phagocytosis, leading to increased susceptibility to infections, including periodontal diseases.
  5. Drug-Induced Agranulocytosis

    • Description: A condition characterized by a dangerously low level of neutrophils due to certain medications.
    • Impact on Neutrophils: The reduction in neutrophil count compromises the immune response, increasing the risk of periodontal infections.
  6. Cyclic Neutropenia

    • Description: A rare genetic disorder characterized by recurrent episodes of neutropenia (low neutrophil count) occurring every 21 days.
    • Impact on Neutrophils: During neutropenic episodes, patients are at a heightened risk for infections, including periodontal disease.

Gingivitis

Gingivitis is an inflammatory condition of the gingiva that can progress through several distinct stages. Understanding these stages is crucial for dental professionals in diagnosing and managing periodontal disease effectively. This lecture will outline the four stages of gingivitis, highlighting the key pathological changes that occur at each stage.

I. Initial Lesion

  • Characteristics:
    • Increased Permeability: The microvascular bed in the gingival tissues becomes more permeable, allowing for the passage of fluids and immune cells.
    • Increased GCF Flow: There is an increase in the flow of gingival crevicular fluid (GCF), which is indicative of inflammation and immune response.
    • PMN Cell Migration: The migration of polymorphonuclear leukocytes (PMNs) is facilitated by various adhesion molecules, including:
      • Intercellular Cell Adhesion Molecule 1 (ICAM-1)
      • E-selectin (ELAM-1) in the dentogingival vasculature.
  • Clinical Implications: This stage marks the beginning of the inflammatory response, where the body attempts to combat the initial bacterial insult.

II. Early Lesion

  • Characteristics:

    • Leukocyte Infiltration: There is significant infiltration of leukocytes, particularly lymphocytes, into the connective tissue of the junctional epithelium.
    • Fibroblast Degeneration: Several fibroblasts within the lesion exhibit signs of degeneration, indicating tissue damage.
    • Proliferation of Basal Cells: The basal cells of the junctional and sulcular epithelium begin to proliferate, which may be a response to the inflammatory process.
  • Clinical Implications: This stage represents a transition from initial inflammation to more pronounced tissue changes, with the potential for further progression if not managed.

III. Established Lesion

  • Characteristics:

    • Predominance of Plasma Cells and B Lymphocytes: There is a marked increase in plasma cells and B lymphocytes, indicating a more advanced immune response.
    • Increased Collagenolytic Activity: The activity of collagen-degrading enzymes increases, leading to the breakdown of collagen fibers in the connective tissue.
    • B Cell Subclasses: The B cells present in the established lesion are predominantly of the IgG1 and IgG3 subclasses, which are important for the immune response.
  • Clinical Implications: This stage is characterized by chronic inflammation, and if left untreated, it can lead to further tissue destruction and the transition to advanced lesions.

IV. Advanced Lesion

  • Characteristics:

    • Loss of Connective Tissue Attachment: There is significant loss of connective tissue attachment to the teeth, which can lead to periodontal pocket formation.
    • Alveolar Bone Loss: Extensive damage occurs to the alveolar bone, contributing to the overall loss of periodontal support.
    • Extensive Damage to Collagen Fibers: The collagen fibers in the gingival tissues are extensively damaged, further compromising the structural integrity of the gingiva.
    • Predominance of Plasma Cells: Plasma cells remain predominant, indicating ongoing immune activity and inflammation.
  • Clinical Implications: This stage represents the transition from gingivitis to periodontitis, where irreversible damage can occur. Early intervention is critical to prevent further progression and loss of periodontal support.

Dental Calculus

Dental calculus, also known as tartar, is a hard deposit that forms on teeth due to the mineralization of dental plaque. Understanding the composition and crystal forms of calculus is essential for dental professionals in diagnosing and managing periodontal disease.

Crystal Forms in Dental Calculus

  1. Common Crystal Forms:

    • Dental calculus typically contains two or more crystal forms. The most frequently detected forms include:
      • Hydroxyapatite:
        • This is the primary mineral component of both enamel and calculus, constituting a significant portion of the calculus sample.
        • Hydroxyapatite is a crystalline structure that provides strength and stability to the calculus.
      • Octacalcium Phosphate:
        • Detected in a high percentage of supragingival calculus samples (97% to 100%).
        • This form is also a significant contributor to the bulk of calculus.
  2. Other Crystal Forms:

    • Brushite:
      • More commonly found in the mandibular anterior region of the mouth.
      • Brushite is a less stable form of calcium phosphate and may indicate a younger calculus deposit.
    • Magnesium Whitlockite:
      • Typically found in the posterior areas of the mouth.
      • This form may be associated with older calculus deposits and can indicate changes in the mineral composition over time.
  3. Variation with Age:

    • The incidence and types of crystal forms present in calculus can vary with the age of the deposit.
    • Younger calculus deposits may have a higher proportion of brushite, while older deposits may show a predominance of hydroxyapatite and magnesium whitlockite.

Clinical Significance

  1. Understanding Calculus Formation:

    • Knowledge of the crystal forms in calculus can help dental professionals understand the mineralization process and the conditions under which calculus forms.
  2. Implications for Treatment:

    • The composition of calculus can influence treatment strategies. For example, older calculus deposits may be more difficult to remove due to their hardness and mineral content.
  3. Assessment of Periodontal Health:

    • The presence and type of calculus can provide insights into a patient�s oral hygiene practices and periodontal health. Regular monitoring and removal of calculus are essential for preventing periodontal disease.
  4. Research and Development:

    • Understanding the mineral composition of calculus can aid in the development of new dental materials and treatments aimed at preventing calculus formation and promoting oral health.

Classification of Cementum According to Schroeder

Cementum is a specialized calcified tissue that covers the roots of teeth and plays a crucial role in periodontal health. According to Schroeder, cementum can be classified into several distinct types based on its cellular composition and structural characteristics. Understanding these classifications is essential for dental professionals in diagnosing and treating periodontal conditions.

Classification of Cementum

  1. Acellular Afibrillar Cementum:

    • Characteristics:
      • Contains neither cells nor collagen fibers.
      • Present in the coronal region of the tooth.
      • Thickness ranges from 1 �m to 15 �m.
    • Function:
      • This type of cementum is thought to play a role in the attachment of the gingiva to the tooth surface.
  2. Acellular Extrinsic Fiber Cementum:

    • Characteristics:
      • Lacks cells but contains closely packed bundles of Sharpey�s fibers, which are collagen fibers that anchor the cementum to the periodontal ligament.
      • Typically found in the cervical third of the roots.
      • Thickness ranges from 30 �m to 230 �m.
    • Function:
      • Provides strong attachment of the periodontal ligament to the tooth, contributing to the stability of the tooth in its socket.
  3. Cellular Mixed Stratified Cementum:

    • Characteristics:
      • Contains both extrinsic and intrinsic fibers and may contain cells.
      • Found in the apical third of the roots, at the apices, and in furcation areas.
      • Thickness ranges from 100 �m to 1000 �m.
    • Function:
      • This type of cementum is involved in the repair and adaptation of the tooth root, especially in response to functional demands and periodontal disease.
  4. Cellular Intrinsic Fiber Cementum:

    • Characteristics:
      • Contains cells but no extrinsic collagen fibers.
      • Primarily fills resorption lacunae, which are areas where cementum has been resorbed.
    • Function:
      • Plays a role in the repair of cementum and may be involved in the response to periodontal disease.
  5. Intermediate Cementum:

    • Characteristics:
      • A poorly defined zone located near the cementoenamel junction (CEJ) of certain teeth.
      • Appears to contain cellular remnants of the Hertwig's epithelial root sheath (HERS) embedded in a calcified ground substance.
    • Function:
      • Its exact role is not fully understood, but it may be involved in the transition between enamel and cementum.

Clinical Significance

  • Importance of Cementum:

    • Understanding the different types of cementum is crucial for diagnosing periodontal diseases and planning treatment strategies.
    • The presence of various types of cementum can influence the response of periodontal tissues to disease and trauma.
  • Cementum in Periodontal Disease:

    • Changes in the thickness and composition of cementum can occur in response to periodontal disease, affecting tooth stability and attachment.

Explore by Exams