Talk to us?

- NEETMDS- courses
NEET MDS Lessons
Periodontology

Hypercementosis

Hypercementosis is a dental condition characterized by the excessive deposition of cementum on the roots of teeth. This condition can have various clinical implications and is associated with several underlying factors. Understanding hypercementosis is essential for dental professionals in diagnosing and managing related conditions.

Characteristics of Hypercementosis

  1. Definition:

    • Hypercementosis is defined as a generalized thickening of the cementum, often accompanied by nodular enlargement of the apical third of the root. It can also manifest as spike-like excrescences known as cemental spikes.
  2. Forms of Hypercementosis:

    • Generalized Type: Involves a uniform thickening of cementum across multiple teeth.
    • Localized Type: Characterized by nodular enlargements or cemental spikes, which may result from:
      • Coalescence of cementicles adhering to the root.
      • Calcification of periodontal fibers at their insertion points into the cementum.

Radiographic Appearance

  • Radiographic Features:
    • On radiographs, hypercementosis is identified by the presence of a radiolucent shadow of the periodontal ligament and a radiopaque lamina dura surrounding the area of hypercementosis, similar to normal cementum.
    • Differentiation:
      • Hypercementosis can be differentiated from other conditions such as periapical cemental dysplasia, condensing osteitis, and focal periapical osteopetrosis, as these entities are located outside the shadow of the periodontal ligament and lamina dura.

Etiology of Hypercementosis

  • Varied Etiology:

    • The exact cause of hypercementosis is not completely understood, but several factors have been identified:
      • Spike-like Hypercementosis: Often results from excessive tension due to orthodontic appliances or occlusal forces.
      • Generalized Hypercementosis: Can occur in various circumstances, including:
        • Teeth Without Antagonists: In cases where teeth lack opposing teeth, hypercementosis may develop as a compensatory mechanism to keep pace with excessive tooth eruption.
        • Low-Grade Periapical Irritation: Associated with pulp disease, where hypercementosis serves as compensation for the loss of fibrous attachment to the tooth.
  • Systemic Associations:

    • Hypercementosis may also be observed in systemic conditions, including:
      • Paget’s Disease: Characterized by hypercementosis of the entire dentition.
      • Other Conditions: Acromegaly, arthritis, calcinosis, rheumatic fever, and thyroid goiter have also been linked to hypercementosis.

Clinical Implications

  1. Diagnosis:

    • Recognizing hypercementosis is important for accurate diagnosis and treatment planning. Radiographic evaluation is essential for distinguishing hypercementosis from other dental pathologies.
  2. Management:

    • While hypercementosis itself may not require treatment, it can complicate dental procedures such as extractions or endodontic treatments. Understanding the condition can help clinicians anticipate potential challenges.
  3. Monitoring:

    • Regular monitoring of patients with known systemic conditions associated with hypercementosis is important to manage any potential complications.

 Naber’s Probe and Furcation Involvement

Furcation involvement is a critical aspect of periodontal disease that affects the prognosis of teeth with multiple roots. Naber’s probe is a specialized instrument designed to assess furcation areas, allowing clinicians to determine the extent of periodontal attachment loss and the condition of the furcation. This lecture will cover the use of Naber’s probe, the classification of furcation involvement, and the clinical significance of these classifications.

Naber’s Probe

  • Description: Naber’s probe is a curved, blunt-ended instrument specifically designed for probing furcation areas. Its unique shape allows for horizontal probing, which is essential for accurately assessing the anatomy of multi-rooted teeth.

  • Usage: The probe is inserted horizontally into the furcation area to evaluate the extent of periodontal involvement. The clinician can feel the anatomical fluting between the roots, which aids in determining the classification of furcation involvement.

Classification of Furcation Involvement

Furcation involvement is classified into four main classes using Naber’s probe:

  1. Class I:

    • Description: The furcation can be probed to a depth of 3 mm.
    • Clinical Findings: The probe can feel the anatomical fluting between the roots, but it cannot engage the roof of the furcation.
    • Significance: Indicates early furcation involvement with minimal attachment loss.
  2. Class II:

    • Description: The furcation can be probed to a depth greater than 3 mm, but not through and through.
    • Clinical Findings: This class represents a range between Class I and Class III, where there is partial loss of attachment but not complete penetration through the furcation.
    • Significance: Indicates moderate furcation involvement that may require intervention.
  3. Class III:

    • Description: The furcation can be completely probed through and through.
    • Clinical Findings: The probe passes from one furcation to the other, indicating significant loss of periodontal support.
    • Significance: Represents advanced furcation involvement, often associated with a poor prognosis for the affected tooth.
  4. Class III+:

    • Description: The probe can go halfway across the tooth.
    • Clinical Findings: Similar to Class III, but with partial obstruction or remaining tissue.
    • Significance: Indicates severe furcation involvement with a significant loss of attachment.
  5. Class IV:

    • Description: Clinically, the examiner can see through the furcation.
    • Clinical Findings: There is complete loss of tissue covering the furcation, making it visible upon examination.
    • Significance: Indicates the most severe form of furcation involvement, often leading to tooth mobility and extraction.

Measurement Technique

  • Measurement Reference: Measurements are taken from an imaginary tangent connecting the prominences of the root surfaces of both roots. This provides a consistent reference point for assessing the depth of furcation involvement.

Clinical Significance

  • Prognosis: The classification of furcation involvement is crucial for determining the prognosis of multi-rooted teeth. Higher classes of furcation involvement generally indicate a poorer prognosis and may necessitate more aggressive treatment strategies.

  • Treatment Planning: Understanding the extent of furcation involvement helps clinicians develop appropriate treatment plans, which may include scaling and root planing, surgical intervention, or extraction.

  • Monitoring: Regular assessment of furcation involvement using Naber’s probe can help monitor disease progression and the effectiveness of periodontal therapy.

Ecological Succession of Biofilm in Dental Plaque

Overview of Biofilm Formation

Biofilm formation on tooth surfaces is a dynamic process characterized by ecological succession, where microbial communities evolve over time. This process transitions from an early aerobic environment dominated by gram-positive facultative species to a later stage characterized by a highly oxygen-deprived environment where gram-negative anaerobic microorganisms predominate.

 

Stages of Biofilm Development

  1. Initial Colonization:

    • Environment: The initial phase occurs in an aerobic environment.
    • Primary Colonizers:
      • The first bacteria to colonize the pellicle-coated tooth surface are predominantly gram-positive facultative microorganisms.
      • Key Species:
        • Actinomyces viscosus
        • Streptococcus sanguis
    • Characteristics:
      • These bacteria can thrive in the presence of oxygen and play a crucial role in the establishment of the biofilm.
  2. Secondary Colonization:

    • Environment: As the biofilm matures, the environment becomes increasingly anaerobic due to the metabolic activities of the initial colonizers.
    • Secondary Colonizers:
      • These microorganisms do not initially colonize clean tooth surfaces but adhere to the existing bacterial cells in the plaque mass.
      • Key Species:
        • Prevotella intermedia
        • Prevotella loescheii
        • Capnocytophaga spp.
        • Fusobacterium nucleatum
        • Porphyromonas gingivalis
    • Coaggregation:
      • Secondary colonizers adhere to primary colonizers through a process known as coaggregation, which involves specific interactions between bacterial cells.
  3. Coaggregation Examples:

    • Coaggregation is a critical mechanism that facilitates the establishment of complex microbial communities within the biofilm.
    • Well-Known Examples:
      • Fusobacterium nucleatum with Streptococcus sanguis
      • Prevotella loescheii with Actinomyces viscosus
      • Capnocytophaga ochracea with Actinomyces viscosus

Implications of Ecological Succession

  • Microbial Diversity: The transition from gram-positive to gram-negative organisms reflects an increase in microbial diversity and complexity within the biofilm.
  • Pathogenic Potential: The accumulation of anaerobic gram-negative bacteria is associated with the development of periodontal diseases, as these organisms can produce virulence factors that contribute to tissue destruction and inflammation.
  • Biofilm Stability: The interactions between different bacterial species through coaggregation enhance the stability and resilience of the biofilm, making it more challenging to remove through mechanical cleaning.

 

 

----------------------------------------------- 

Subgingival and Supragingival Calculus

Overview of Calculus Formation

Calculus, or tartar, is a hardened form of dental plaque that can form on both supragingival (above the gum line) and subgingival (below the gum line) surfaces. Understanding the differences between these two types of calculus is essential for effective periodontal disease management.

Subgingival Calculus

  1. Color and Composition:

    • Appearance: Subgingival calculus is typically dark green or dark brown in color.
    • Causes of Color:
      • The dark color is likely due to the presence of matrix components that differ from those found in supragingival calculus.
      • It is influenced by iron heme pigments that are associated with the bleeding of inflamed gingiva, reflecting the inflammatory state of the periodontal tissues.
  2. Formation Factors:

    • Matrix Components: The subgingival calculus matrix contains blood products, which contribute to its darker coloration.
    • Bacterial Environment: The subgingival environment is typically more anaerobic and harbors different bacterial species compared to supragingival calculus.

Supragingival Calculus

  1. Formation Factors:

    • Dependence on Plaque and Saliva:
      • The degree of supragingival calculus formation is primarily influenced by the amount of bacterial plaque present and the secretion of salivary glands.
      • Increased plaque accumulation leads to greater calculus formation.
  2. Inorganic Components:

    • Source: The inorganic components of supragingival calculus are mainly derived from saliva.
    • Composition: These components include minerals such as calcium and phosphate, which contribute to the calcification process of plaque.

Comparison of Inorganic Components

  • Supragingival Calculus:

    • Inorganic components are primarily sourced from saliva, which contains minerals that facilitate the formation of calculus on the tooth surface.
  • Subgingival Calculus:

    • In contrast, the inorganic components of subgingival calculus are derived mainly from crevicular fluid (serum transudate), which seeps into the gingival sulcus and contains various proteins and minerals from the bloodstream.

Periodontal Fibers

Periodontal fibers play a crucial role in maintaining the integrity of the periodontal ligament and supporting the teeth within the alveolar bone. Understanding the different groups of periodontal fibers is essential for comprehending their functions in periodontal health and disease.

1. Gingivodental Group

  • Location:
    • Present on the facial, lingual, and interproximal surfaces of the teeth.
  • Attachment:
    • These fibers are embedded in the cementum just beneath the epithelium at the base of the gingival sulcus.
  • Function:
    • They help support the gingiva and maintain the position of the gingival margin.

2. Circular Group

  • Location:
    • These fibers course through the connective tissue of the marginal and interdental gingiva.
  • Attachment:
    • They encircle the tooth in a ring-like fashion.
  • Function:
    • The circular fibers help maintain the contour of the gingiva and provide support to the marginal gingiva.

3. Transseptal Group

  • Location:
    • Located interproximally, these fibers extend between the cementum of adjacent teeth.
  • Attachment:
    • They lie in the area between the epithelium at the base of the gingival sulcus and the crest of the interdental bone.
  • Function:
    • The transseptal fibers are primarily responsible for the post-retention relapse of orthodontically positioned teeth.
    • They are sometimes classified as principal fibers of the periodontal ligament.
    • Collectively, they form the interdental ligament of the arch, providing stability to the interproximal areas.

4. Semicircular Fibers

  • Location:
    • These fibers attach to the proximal surface of a tooth immediately below the cementoenamel junction (CEJ).
  • Attachment:
    • They go around the facial or lingual marginal gingiva of the tooth and attach to the other proximal surface of the same tooth.
  • Function:
    • Semicircular fibers help maintain the position of the tooth and support the gingival tissue around it.

5. Transgingival Fibers

  • Location:
    • These fibers attach to the proximal surface of one tooth and traverse the interdental space diagonally to attach to the proximal surface of the adjacent tooth.
  • Function:
    • Transgingival fibers provide support across the interdental space, helping to maintain the position of adjacent teeth and the integrity of the gingival tissue.

Some important points about the periodontal pocket :
·Soft tissue of pocket wall shows both proliferative & degenerative changes
·Most severe degenerative changes are seen on the lateral wall of pocket
·Plasma cells are the predominant infiltrate (80%). Others include lymphocytes & a scattering of PMNs
·Height of junctional epithelium shortened to only 50-100µm
·Severity of degenerative changes is not linked to pocket depth
·Junctional epithelium starts to lose attachment to tooth when PMN infiltration in junctional epithelium increases above 60%.

Assessing New Attachment in Periodontal Therapy

Assessing new attachment following periodontal therapy is crucial for evaluating treatment outcomes and understanding the healing process. However, various methods of assessment have limitations that must be considered. This lecture will discuss the reliability of different assessment methods for new attachment, including periodontal probing, radiographic analysis, and histologic methods.

1. Periodontal Probing

  • Assessment Method: Periodontal probing is commonly used to measure probing depth and attachment levels before and after therapy.

  • Limitations:

    • Coronal Positioning of Probe Tip: After therapy, when the inflammatory lesion is resolved, the probe tip may stop coronal to the apical termination of the epithelium. This can lead to misleading interpretations of attachment gain.
    • Infrabony Defects: Following treatment of infrabony defects, new bone may form so close to the tooth surface that the probe cannot penetrate. This can result in a false impression of improved attachment levels.
    • Interpretation of Results: A gain in probing attachment level does not necessarily indicate a true gain of connective tissue attachment. Instead, it may reflect improved health of the surrounding tissues, which increases resistance to probe penetration.

2. Radiographic Analysis and Reentry Operations

  • Assessment Method: Radiographic analysis involves comparing radiographs taken before and after therapy to evaluate changes in bone levels. Reentry operations allow for direct inspection of the treated area.

  • Limitations:

    • Bone Fill vs. New Attachment: While radiographs can provide evidence of new bone formation (bone fill), they do not document the formation of new root cementum or a new periodontal ligament. Therefore, radiographic evidence alone cannot confirm the establishment of new attachment.

3. Histologic Methods

  • Assessment Method: Histologic analysis involves examining tissue samples under a microscope to assess the formation of new attachment, including new cementum and periodontal ligament.

  • Advantages:

    • Validity: Histologic methods are considered the only valid approach to assess the formation of new attachment accurately.
  • Limitations:

    • Pre-Therapy Assessment: Accurate assessment of the attachment level prior to therapy is essential for histologic analysis. If the initial attachment level cannot be determined with certainty, it may compromise the validity of the findings.

Automated Probing Systems

Automated probing systems have become increasingly important in periodontal assessments, providing enhanced accuracy and efficiency in measuring pocket depths and clinical attachment levels. This lecture will focus on the Florida Probe System, the Foster-Miller Probe, and the Toronto Automated Probe, discussing their features, advantages, and limitations.

1. Florida Probe System

  • Overview: The Florida Probe System is an automated probing system designed to facilitate accurate periodontal assessments. It consists of several components:

    • Probe Handpiece: The instrument used to measure pocket depths.
    • Digital Readout: Displays measurements in real-time.
    • Foot Switch: Allows for hands-free operation.
    • Computer Interface: Connects the probe to a computer for data management.
  • Specifications:

    • Probe Diameter: The end of the probe is 0.4 mm in diameter, allowing for precise measurements in periodontal pockets.
  • Advantages:

    • Constant Probing Force: The system applies a consistent force during probing, reducing variability in measurements.
    • Precise Electronic Measurement: Provides accurate and reproducible measurements of pocket depths.
    • Computer Storage of Data: Enables easy storage, retrieval, and analysis of patient data, facilitating better record-keeping and tracking of periodontal health over time.
  • Disadvantages:

    • Lack of Tactile Sensitivity: The automated nature of the probe means that clinicians do not receive tactile feedback, which can be important for assessing tissue health.
    • Fixed Force Setting: The use of a fixed force setting throughout the mouth may not account for variations in tissue condition, potentially leading to inaccurate measurements or patient discomfort.

2. Foster-Miller Probe

  • Overview: The Foster-Miller Probe is another automated probing system that offers unique features for periodontal assessment.

  • Capabilities:

    • Pocket Depth Measurement: This probe can measure pocket depths effectively.
    • Detection of the Cemento-Enamel Junction (CEJ): It is capable of coupling pocket depth measurements with the detection of the CEJ, providing valuable information about clinical attachment levels.

3. Toronto Automated Probe

  • Overview: The Toronto Automated Probe is designed to enhance the accuracy of probing in periodontal assessments.

  • Specifications:

    • Probing Mechanism: The sulcus is probed with a 0.5 mm nickel titanium wire that is extended under air pressure, allowing for gentle probing.
    • Angular Control: The system controls angular discrepancies using a mercury tilt sensor, which limits angulation within ±30 degrees. This feature helps maintain consistent probing angles.
  • Limitations:

    • Reproducible Positioning: The probe requires reproducible positioning of the patient’s head, which can be challenging in some clinical settings.
    • Limited Access: The design may not easily accommodate measurements of second or third molars, potentially limiting its use in comprehensive periodontal assessments.

Explore by Exams