Talk to us?

Periodontology - NEETMDS- courses
NEET MDS Lessons
Periodontology

Dental Calculus

Dental calculus, also known as tartar, is a hard deposit that forms on teeth due to the mineralization of dental plaque. Understanding the composition and crystal forms of calculus is essential for dental professionals in diagnosing and managing periodontal disease.

Crystal Forms in Dental Calculus

  1. Common Crystal Forms:

    • Dental calculus typically contains two or more crystal forms. The most frequently detected forms include:
      • Hydroxyapatite:
        • This is the primary mineral component of both enamel and calculus, constituting a significant portion of the calculus sample.
        • Hydroxyapatite is a crystalline structure that provides strength and stability to the calculus.
      • Octacalcium Phosphate:
        • Detected in a high percentage of supragingival calculus samples (97% to 100%).
        • This form is also a significant contributor to the bulk of calculus.
  2. Other Crystal Forms:

    • Brushite:
      • More commonly found in the mandibular anterior region of the mouth.
      • Brushite is a less stable form of calcium phosphate and may indicate a younger calculus deposit.
    • Magnesium Whitlockite:
      • Typically found in the posterior areas of the mouth.
      • This form may be associated with older calculus deposits and can indicate changes in the mineral composition over time.
  3. Variation with Age:

    • The incidence and types of crystal forms present in calculus can vary with the age of the deposit.
    • Younger calculus deposits may have a higher proportion of brushite, while older deposits may show a predominance of hydroxyapatite and magnesium whitlockite.

Clinical Significance

  1. Understanding Calculus Formation:

    • Knowledge of the crystal forms in calculus can help dental professionals understand the mineralization process and the conditions under which calculus forms.
  2. Implications for Treatment:

    • The composition of calculus can influence treatment strategies. For example, older calculus deposits may be more difficult to remove due to their hardness and mineral content.
  3. Assessment of Periodontal Health:

    • The presence and type of calculus can provide insights into a patient’s oral hygiene practices and periodontal health. Regular monitoring and removal of calculus are essential for preventing periodontal disease.
  4. Research and Development:

    • Understanding the mineral composition of calculus can aid in the development of new dental materials and treatments aimed at preventing calculus formation and promoting oral health.

Progression from Gingivitis to Periodontitis

The transition from gingivitis to periodontitis is a critical process in periodontal disease progression. This lecture will outline the key stages involved in this progression, highlighting the changes in microbial composition, host response, and tissue alterations.

Pathway of Progression

  1. Establishment and Maturation of Supragingival Plaque:

    • The process begins with the formation of supragingival plaque, which is evident in gingivitis.
    • As this plaque matures, it becomes more complex and can lead to changes in the surrounding tissues.
  2. Migration of Periodontopathogenic Bacteria:

    • When the microbial load overwhelms the local host immune response, pathogenic bacteria migrate subgingivally (below the gum line).
    • This migration establishes a subgingival niche that is conducive to the growth of periodontopathogenic bacteria.

Initial Lesion

  • Timeline:
    • The initial lesion, characterized by subclinical gingivitis, appears approximately 2 to 4 days after the colonization of the gingival sulcus by bacteria.
  • Clinical Manifestations:
    • Vasculitis: Inflammation of blood vessels in the gingival tissue.
    • Exudation of Serous Fluid: Increased flow of gingival crevicular fluid (GCF) from the gingival sulcus.
    • Increased PMN Migration: Polymorphonuclear neutrophils (PMNs) migrate into the sulcus in response to the inflammatory process.
    • Alteration of Junctional Epithelium: Changes occur at the base of the pocket, affecting the integrity of the junctional epithelium.
    • Collagen Dissolution: Perivascular collagen begins to dissolve, contributing to tissue breakdown.

Early Lesion

  • Timeline:
    • The early lesion forms within 4 to 7 days after the initial lesion due to the continued accumulation of bacterial plaque.
  • Characteristics:
    • Leukocyte Accumulation: There is a significant increase in leukocytes at the site of acute inflammation, indicating an ongoing immune response.
    • Cytopathic Alterations: Resident fibroblasts undergo cytopathic changes, affecting their function and viability.
    • Collagen Loss: Increased collagen loss occurs within the marginal gingiva, contributing to tissue destruction.
    • Proliferation of Basal Cells: The basal cells of the junctional epithelium proliferate in response to the inflammatory environment.

Periodontal Medicaments

Periodontal diseases often require adjunctive therapies to traditional mechanical treatments such as scaling and root planing. Various medicaments have been developed to enhance the healing process and control infection in periodontal tissues. This lecture will discuss several periodontal medicaments, their compositions, and their clinical applications.

1. Elyzol

  • Composition:
    • Elyzol is an oil-based gel containing 25% metronidazole. It is formulated with glyceryl mono-oleate and sesame oil.
  • Clinical Use:
    • Elyzol has been found to be equivalent to scaling and root planing in terms of effectiveness for treating periodontal disease.
    • However, no adjunctive effects beyond those achieved with mechanical debridement have been demonstrated.

2. Actisite

  • Composition:

    • Actisite consists of tetracycline-containing fibers.
    • Each fiber has a diameter of 0.5 mm and contains 12.7 mg of tetracycline per 9 inches of fiber.
  • Clinical Use:

    • The fibers are placed directly into periodontal pockets, where they release tetracycline over time, helping to reduce bacterial load and promote healing.

3. Arestin

  • Composition:

    • Arestin contains minocycline, which is delivered as a biodegradable powder in a syringe.
  • Clinical Use:

    • Arestin is indicated for the treatment of periodontal disease and is applied directly into periodontal pockets, where it provides localized antibiotic therapy.

4. Atridox

  • Composition:

    • Atridox contains 10% doxycycline in a syringeable gel system that is biodegradable.
  • Clinical Use:

    • The gel is injected into periodontal pockets, where it solidifies and releases doxycycline over time, aiding in the management of periodontal disease.

5. Dentamycin and Periocline

  • Composition:

    • Both Dentamycin and Periocline contain 2% minocycline hydrochloride.
  • Clinical Use:

    • These products are used similarly to other local delivery systems, providing localized antibiotic therapy to reduce bacterial infection in periodontal pockets.

6. Periochip

  • Composition:

    • Periochip is a biodegradable chip that contains chlorhexidine.
  • Clinical Use:

    • The chip is placed in the gingival crevice, where it releases chlorhexidine over time, providing antimicrobial action and helping to control periodontal disease.

Anatomy and Histology of the Periodontium

Gingiva (normal clinical appearance): no muscles, no glands; keratinized

  • Color: coral pink but does vary with individuals and races due to cutaneous pigmentation
  • Papillary contour: pyramidal shape with one F and one L papilla and the col filling interproximal space to the contact area (col the starting place gingivitis)
  • Marginal contour: knife-edged and scalloped
  • Texture: stippled (orange-peel texture); blow air to dry out and see where stippling ends to see end of gingiva
  • Consistency: firm and resilient (push against it and won’t move); bound to underlying bone
  • Sulcus depth: 0-3mm
  • Exudate: no exudates (blood, pus, water)

  Anatomic and histological structures

Gingival unit: includes periodontium above alveolar crest of bone

a. Alveolar mucosa: histology- non-keratinized, stratified, squamous epithelium, submucosa with glands, loose connective tissue with collagen and elastin, muscles.  No epithelial ridges, no stratum granulosum (flattened cells below keratin layer)

b. Mucogingival junction: clinical demarcation between alveolar mucosa and attached gingiva

c. Attached gingiva: histology- keratinized, stratified, squamous epithelium with epithelial ridges (basal cell layer, prickle cell layer, granular cell layer (stratum granulosum), keratin layer); no submucosa

  • Dense connective tissue: predominantly collagen, bound to periosteum of bone by Sharpey fibers
  • Reticular fibers between collagen fibers and are continuous with reticulin in blood vessels

d. Free gingival groove: demarcation between attached and free gingiva; denotes base of gingival sulcus in normal gingiva; not always seen

e. Free gingival margin: area from free gingival groove to epithelial attachment (up and over ® inside)

  • Oral surface: stratified, squamous epithelium with epithelial ridges
  • Tooth side surface (sulcular epithelium): non-keratinized, stratified, squamous epithelium with no epithelial ridges (basal cell and prickle cell layers)

f. Gingival sulcus: space bounded by tooth surface, sulcular epithelium, and junctional epithelium; 0-3mm depth; space between epithelium and tooth

g. Dento-gingival junction: combination of epithelial and fibrous attachment

  • Junctional epithelium (epithelial attachment): attachment of epithelial cells by hemi-desmosomes and sticky substances (basal lamina- 800-1200 A, DAS-acid mucopolysaccharides, hyaluronic acid, chondroitin sulfate A, C, and B), to enamel, enamel and cementum, or cementum depending on stage of passive eruption.  Length ranges from 0.25-1.35mm.
  • Fibrous attachment: attachment of collagen fibers (Sharpey’s fibers) into cementum just beneath epithelial attachment; ~ 1mm thick

h. Nerve fibers: myelinated and non-myelinated (for pain) in connective tissue.  Both free and specialized endings for pain, touch pressure, and temperature -> proprioception.  If dentures, rely on TMJ.

i.Mesh of terminal argyophilic fibers (stain silver), some extending into epithelium

ii  Meissner-type corpuscles: pressure sensitive sensory nerve encased in CT

iii.Krause-type corpuscles: temperature receptors

iv. Encapsulated spindles

i. Gingival fibers:

i.  Gingivodental group:

  • Group I (A): from cementum to free gingival margin
  • Group II (B): from cementum to attached gingiva
  • Group III (C): from cementum over alveolar crest to periosteum on buccal and lingual plates

ii.  Circular (ligamentum circularis): encircles tooth in free gingiva

iii. Transeptal fibers: connects cementum of adjacent teeth, runs over interdental septum of alveolar bone.  Separates gingival unit from attachment apparatus.

Transeptal and Group III fibers the major defense against stuff getting into bone and ligament.

 

2.  Attachment apparatus: periodontium below alveolar crest of bone

Periodontal ligament: Sharpey’s fibers (collagen) connecting cementum to bone (bundle bone).  Few elastic and oxytalan fibers associated with blood vessels and embedded in cementum in cervical third of tooth.  Components divided as follows:

i. Alveolar crest fibers: from cementum just below CEJ apical to alveolar crest of bone

ii.Horizontal fibers: just apical to alveolar crest group, run at right angles to long axis of tooth from cementum horizontally to alveolar bone proper

iii.Oblique fibers: most numerous, from cementum run coronally to alveolar bone proper

iv. Apical fibers: radiate from cementum around apex of root apically to alveolar bone proper, form socket base

v. Interradicular fibers: found only between roots of multi-rooted teeth from cementum to alveolar bone proper

vi. Intermediate plexus: fibers which splice Sharpey’s fibers from bone and cementum

vii. Epithelial Rests of Malassez: cluster and individual epithelial cells close to cementum which are remnants of Hertwig’s epithelial root sheath; potential source of periodontal cysts.

viii. Nerve fibers: myelinated and non-myelinated; abundant supply of sensory free nerve endings capable of transmitting tactile pressure and pain sensation by trigeminal pathway and elongated spindle-like nerve fiber for proprioceptive impulses

Cementum: 45-50% inorganic; 50-55% organic (enamel is 97% inorganic; dentin 70% inorganic)

i.  Acellular cementum: no cementocytes; covers dentin (older) in coronal ½ to 2/3 of root, 16-60 mm thick

ii. Cellular cementum: cementocytes; covers dentin in apical ½ to 1/3 of root; also may cover acellular cementum areas in repair areas, 15-200 mm thick

iii. Precementum (cementoid): meshwork of irregularly arranged collagen in surface of cementum where formation starts

iv. Cemento-enamel junction (CEJ): 60-65% of time cementum overlaps enamel; 30% meet end-to-end; 5-10% space between

v. Cementum slower healing than bone or PDL.  If expose dentinotubules ® root sensitivity.

Alveolar bone: 65% inorganic, 35% organic

i. Alveolar bone proper (cribriform plate): lamina dura on x-ray; bundle bone receive Sharpey fibers from PDL

ii. Supporting bone: cancellous, trabecular (vascularized) and F and L plates of compact bone

Blood supply to periodontium

i. Alveolar blood vessels (inferior and superior)

A) Interalveolar: actually runs through bone then exits, main supply to alveolar bone and PDL

B) Supraperiosteal: just outside bone, to gingiva and alveolar bone

C) Dental (pulpal): to pulp and periapical area

D) Terminal vessels (supracrestal): anastomose of A and B above beneath the sulcular epithelium

E) PDL gets blood from: most from branches of interalveolar blood vessels from alveolar bone marrow spaces, supraperiosteal vessels when interalveolar vessels not present, pulpal (apical) vessels, supracrestal gingival vessels

ii. Lymphatic drainage: accompany blood vessels to regional lymph nodes (esp. submaxillary group)

Platelet-Derived Growth Factor (PDGF)

Platelet-Derived Growth Factor (PDGF) is a crucial glycoprotein involved in various biological processes, particularly in wound healing and tissue repair. Understanding its role and mechanisms can provide insights into its applications in regenerative medicine and periodontal therapy.

Overview of PDGF

  1. Definition:

    • PDGF is a glycoprotein that plays a significant role in cell growth, proliferation, and differentiation.
  2. Source:

    • PDGF is carried in the alpha granules of platelets and is released during the process of blood clotting.
  3. Discovery:

    • It was one of the first growth factors to be described in scientific literature.
    • Originally isolated from platelets, PDGF was found to exhibit mitogenic activity specifically in smooth muscle cells.

Functions of PDGF

  1. Mitogenic Activity:

    • PDGF stimulates the proliferation of various cell types, including:
      • Smooth muscle cells
      • Fibroblasts
      • Endothelial cells
    • This mitogenic activity is essential for tissue repair and regeneration.
  2. Role in Wound Healing:

    • PDGF is released at the site of injury and plays a critical role in:
      • Promoting cell migration to the wound site.
      • Stimulating the formation of new blood vessels (angiogenesis).
      • Enhancing the synthesis of extracellular matrix components, which are vital for tissue structure and integrity.
  3. Involvement in Periodontal Healing:

    • In periodontal therapy, PDGF can be utilized to enhance healing in periodontal defects and promote regeneration of periodontal tissues.
    • It has been studied for its potential in guided tissue regeneration (GTR) and in the treatment of periodontal disease.

Clinical Applications

  1. Regenerative Medicine:

    • PDGF is being explored in various regenerative medicine applications, including:
      • Bone regeneration
      • Soft tissue healing
      • Treatment of chronic wounds
  2. Periodontal Therapy:

    • PDGF has been incorporated into certain periodontal treatment modalities to enhance healing and regeneration of periodontal tissues.
    • It can be used in conjunction with graft materials to improve outcomes in periodontal surgery.

Finger Rests in Dental Instrumentation

Use of finger rests is essential for providing stability and control during procedures. A proper finger rest allows for more precise movements and reduces the risk of hand fatigue.

Importance of Finger Rests

  • Stabilization: Finger rests serve to stabilize the hand and the instrument, providing a firm fulcrum that enhances control during procedures.
  • Precision: A stable finger rest allows for more accurate instrumentation, which is crucial for effective treatment and patient safety.
  • Reduced Fatigue: By providing support, finger rests help reduce hand and wrist fatigue, allowing the clinician to work more comfortably for extended periods.

Types of Finger Rests

  1. Conventional Finger Rest:

    • Description: The finger rest is established on the tooth surfaces immediately adjacent to the working area.
    • Application: This is the most common type of finger rest, providing direct support for the hand while working on a specific tooth. It allows for precise movements and control during instrumentation.
  2. Cross Arch Finger Rest:

    • Description: The finger rest is established on the tooth surfaces on the other side of the same arch.
    • Application: This technique is useful when working on teeth that are not directly adjacent to the finger rest. It provides stability while allowing access to the working area from a different angle.
  3. Opposite Arch Finger Rest:

    • Description: The finger rest is established on the tooth surfaces of the opposite arch (e.g., using a mandibular arch finger rest for instrumentation on the maxillary arch).
    • Application: This type of finger rest is particularly beneficial when accessing the maxillary teeth from the mandibular arch, providing a stable fulcrum while maintaining visibility and access.
  4. Finger on Finger Rest:

    • Description: The finger rest is established on the index finger or thumb of the non-operating hand.
    • Application: This technique is often used in areas where traditional finger rests are difficult to establish, such as in the posterior regions of the mouth. It allows for flexibility and adaptability in positioning.

Classification of Cementum According to Schroeder

Cementum is a specialized calcified tissue that covers the roots of teeth and plays a crucial role in periodontal health. According to Schroeder, cementum can be classified into several distinct types based on its cellular composition and structural characteristics. Understanding these classifications is essential for dental professionals in diagnosing and treating periodontal conditions.

Classification of Cementum

  1. Acellular Afibrillar Cementum:

    • Characteristics:
      • Contains neither cells nor collagen fibers.
      • Present in the coronal region of the tooth.
      • Thickness ranges from 1 µm to 15 µm.
    • Function:
      • This type of cementum is thought to play a role in the attachment of the gingiva to the tooth surface.
  2. Acellular Extrinsic Fiber Cementum:

    • Characteristics:
      • Lacks cells but contains closely packed bundles of Sharpey’s fibers, which are collagen fibers that anchor the cementum to the periodontal ligament.
      • Typically found in the cervical third of the roots.
      • Thickness ranges from 30 µm to 230 µm.
    • Function:
      • Provides strong attachment of the periodontal ligament to the tooth, contributing to the stability of the tooth in its socket.
  3. Cellular Mixed Stratified Cementum:

    • Characteristics:
      • Contains both extrinsic and intrinsic fibers and may contain cells.
      • Found in the apical third of the roots, at the apices, and in furcation areas.
      • Thickness ranges from 100 µm to 1000 µm.
    • Function:
      • This type of cementum is involved in the repair and adaptation of the tooth root, especially in response to functional demands and periodontal disease.
  4. Cellular Intrinsic Fiber Cementum:

    • Characteristics:
      • Contains cells but no extrinsic collagen fibers.
      • Primarily fills resorption lacunae, which are areas where cementum has been resorbed.
    • Function:
      • Plays a role in the repair of cementum and may be involved in the response to periodontal disease.
  5. Intermediate Cementum:

    • Characteristics:
      • A poorly defined zone located near the cementoenamel junction (CEJ) of certain teeth.
      • Appears to contain cellular remnants of the Hertwig's epithelial root sheath (HERS) embedded in a calcified ground substance.
    • Function:
      • Its exact role is not fully understood, but it may be involved in the transition between enamel and cementum.

Clinical Significance

  • Importance of Cementum:

    • Understanding the different types of cementum is crucial for diagnosing periodontal diseases and planning treatment strategies.
    • The presence of various types of cementum can influence the response of periodontal tissues to disease and trauma.
  • Cementum in Periodontal Disease:

    • Changes in the thickness and composition of cementum can occur in response to periodontal disease, affecting tooth stability and attachment.

Explore by Exams