Talk to us?

- NEETMDS- courses
NEET MDS Lessons
Orthodontics

Theories of Tooth Movement

  1. Pressure-Tension Theory:

    • Concept: This theory posits that tooth movement occurs in response to the application of forces that create areas of pressure and tension in the periodontal ligament (PDL).
    • Mechanism: When a force is applied to a tooth, the side of the tooth experiencing pressure (compression) leads to bone resorption, while the opposite side experiences tension, promoting bone deposition. This differential response allows the tooth to move in the direction of the applied force.
    • Clinical Relevance: This theory underlies the rationale for using light, continuous forces in orthodontic treatment to facilitate tooth movement without causing damage to the periodontal tissues.
  2. Biological Response Theory:

    • Concept: This theory emphasizes the biological response of the periodontal ligament and surrounding tissues to mechanical forces.
    • Mechanism: The application of force leads to a cascade of biological events, including the release of signaling molecules that stimulate osteoclasts (bone resorption) and osteoblasts (bone formation). This process is influenced by the magnitude, duration, and direction of the applied forces.
    • Clinical Relevance: Understanding the biological response helps orthodontists optimize force application to achieve desired tooth movement while minimizing adverse effects.
  3. Cortical Bone Theory:

    • Concept: This theory focuses on the role of cortical bone in tooth movement.
    • Mechanism: It suggests that the movement of teeth is influenced by the remodeling of cortical bone, which is denser and less responsive than the trabecular bone. The movement of teeth through the cortical bone requires greater forces and longer durations of application.
    • Clinical Relevance: This theory highlights the importance of considering the surrounding bone structure when planning orthodontic treatment, especially in cases requiring significant tooth movement.

Headgear is an extraoral orthodontic appliance used to correct dental and skeletal discrepancies, particularly in growing patients. It is designed to apply forces to the teeth and jaws to achieve specific orthodontic goals, such as correcting overbites, underbites, and crossbites, as well as guiding the growth of the maxilla (upper jaw) and mandible (lower jaw). Below is an overview of headgear, its types, mechanisms of action, indications, advantages, and limitations.

Types of Headgear

  1. Class II Headgear:

    • Description: This type is used primarily to correct Class II malocclusions, where the upper teeth are positioned too far forward relative to the lower teeth.
    • Mechanism: It typically consists of a facebow that attaches to the maxillary molars and is anchored to a neck strap or a forehead strap. The appliance applies a backward force to the maxilla, helping to reposition it and/or retract the upper incisors.
  2. Class III Headgear:

    • Description: Used to correct Class III malocclusions, where the lower teeth are positioned too far forward relative to the upper teeth.
    • Mechanism: This type of headgear may use a reverse-pull face mask that applies forward and upward forces to the maxilla, encouraging its growth and improving the relationship between the upper and lower jaws.
  3. Cervical Headgear:

    • Description: This type is used to control the growth of the maxilla and is often used in conjunction with other orthodontic appliances.
    • Mechanism: It consists of a neck strap that connects to a facebow, applying forces to the maxilla to restrict its forward growth while allowing the mandible to grow.
  4. High-Pull Headgear:

    • Description: This type is used to control the vertical growth of the maxilla and is often used in cases with deep overbites.
    • Mechanism: It features a head strap that connects to the facebow and applies upward and backward forces to the maxilla.

Mechanism of Action

  • Force Application: Headgear applies extraoral forces to the teeth and jaws, influencing their position and growth. The forces can be directed to:
    • Restrict maxillary growth: In Class II cases, headgear can help prevent the maxilla from growing too far forward.
    • Promote maxillary growth: In Class III cases, headgear can encourage forward growth of the maxilla.
    • Reposition teeth: By applying forces to the molars, headgear can help align the dental arches and improve occlusion.

Indications for Use

  • Class II Malocclusion: To correct overbites and improve the relationship between the upper and lower teeth.
  • Class III Malocclusion: To promote the growth of the maxilla and improve the occlusal relationship.
  • Crowding: To create space for teeth by retracting the upper incisors.
  • Facial Aesthetics: To improve the overall facial profile and aesthetics by modifying jaw relationships.

Advantages of Headgear

  1. Non-Surgical Option: Provides a way to correct skeletal discrepancies without the need for surgical intervention.
  2. Effective for Growth Modification: Particularly useful in growing patients, as it can influence the growth of the jaws.
  3. Improves Aesthetics: Can enhance facial aesthetics by correcting jaw relationships and improving the smile.

Limitations of Headgear

  1. Patient Compliance: The effectiveness of headgear relies heavily on patient compliance. Patients must wear the appliance as prescribed (often 12-14 hours a day) for optimal results.
  2. Discomfort: Patients may experience discomfort or soreness when first using headgear, which can affect compliance.
  3. Adjustment Period: It may take time for patients to adjust to wearing headgear, and they may need guidance on how to use it properly.
  4. Limited Effectiveness in Adults: While headgear is effective in growing patients, its effectiveness may be limited in adults due to the maturity of the skeletal structures.

Ashley Howe’s Analysis of Tooth Crowding

Introduction

Today, we will discuss Ashley Howe’s analysis, which provides valuable insights into the causes of tooth crowding and the relationship between dental arch dimensions and tooth size. Howe’s work emphasizes the importance of arch width over arch length in understanding dental crowding.

Key Concepts

Tooth Crowding

  • Definition: Tooth crowding refers to the lack of space in the dental arch for all teeth to fit properly.
  • Howe’s Perspective: Howe posited that tooth crowding is primarily due to a deficiency in arch width rather than arch length.

Relationship Between Tooth Size and Arch Width

  • Howe identified a significant relationship between the total mesiodistal diameter of teeth anterior to the second permanent molar and the width of the dental arch in the first premolar region. This relationship is crucial for understanding how tooth size can impact arch dimensions and overall dental alignment.

Procedure for Analysis

To conduct Ashley Howe’s analysis, the following measurements must be obtained:

  1. Percentage of PMD to TTM
    PMD X 100
          TTM
  2. Percentage of PMBAW to TTM
    PMBAW X 100
        TTM
  3. Percentage of BAL to TTM: [ \text{Percentage of BAL} = \left( \frac{\text{BAL}}{\text{TTM}} \right) \times 100 ]

Where:

  • PMD = Total mesiodistal diameter of teeth anterior to the second permanent molar.
  • PMBAW = Premolar basal arch width.
  • BAL = Basal arch length.
  • TTM = Total tooth mesiodistal measurement.

Inferences from the Analysis

The results of the measurements can lead to several important inferences regarding treatment options for tooth crowding:

  1. If PMBAW > PMD:

    • This indicates that the basal arch is sufficient to allow for the expansion of the premolars. In this case, expansion may be a viable treatment option.
  2. If PMD > PMBAW:

    • This scenario can lead to three possible treatment options:
      1. Contraindicated for Expansion: Expansion may not be advisable.
      2. Move Teeth Distally: Consideration for distal movement of teeth to create space.
      3. Extract Some Teeth: Extraction may be necessary to alleviate crowding.
  3. If PMBAW X 100 / TTM:

    • Less than 37%: Extraction is likely required.
    • 44%: This is considered an ideal case where extraction is not necessary.
    • Between 37% and 44%: This is a borderline case where extraction may or may not be required, necessitating further evaluation.

Anchorage in orthodontics refers to the resistance to unwanted tooth movement during orthodontic treatment. It is a critical concept that helps orthodontists achieve desired tooth movements while preventing adjacent teeth or the entire dental arch from shifting. Proper anchorage is essential for effective treatment planning and execution, especially in complex cases where multiple teeth need to be moved simultaneously.

Types of Anchorage

  1. Absolute Anchorage:

    • Definition: This type of anchorage prevents any movement of the anchorage unit (the teeth or structures providing support) during treatment.
    • Application: Used when significant movement of other teeth is required, such as in cases of molar distalization or when correcting severe malocclusions.
    • Methods:
      • Temporary Anchorage Devices (TADs): Small screws or plates that are temporarily placed in the bone to provide stable anchorage.
      • Extraoral Appliances: Devices like headgear that anchor to the skull or neck to prevent movement of certain teeth.
  2. Relative Anchorage:

    • Definition: This type allows for some movement of the anchorage unit while still providing enough resistance to achieve the desired tooth movement.
    • Application: Commonly used in cases where some teeth need to be moved while others serve as anchors.
    • Methods:
      • Brackets and Bands: Teeth can be used as anchors, but they may move slightly during treatment.
      • Class II or Class III Elastics: These can be used to create a force system that allows for some movement of the anchorage unit.
  3. Functional Anchorage:

    • Definition: This type utilizes the functional relationships between teeth and the surrounding structures to achieve desired movements.
    • Application: Often used in conjunction with functional appliances that guide jaw growth and tooth positioning.
    • Methods:
      • Functional Appliances: Such as the Herbst or Bionator, which reposition the mandible and influence the growth of the maxilla.

Factors Influencing Anchorage

  1. Tooth Position: The position and root morphology of the anchorage teeth can affect their ability to resist movement.
  2. Bone Quality: The density and health of the surrounding bone can influence the effectiveness of anchorage.
  3. Force Magnitude and Direction: The amount and direction of forces applied during treatment can impact the stability of anchorage.
  4. Patient Compliance: Adherence to wearing appliances as prescribed is crucial for maintaining effective anchorage.

Clinical Considerations

  • Treatment Planning: Proper assessment of anchorage needs is essential during the treatment planning phase. Orthodontists must determine the type of anchorage required based on the specific movements needed.
  • Monitoring Progress: Throughout treatment, orthodontists should monitor the anchorage unit to ensure it remains stable and that desired tooth movements are occurring as planned.
  • Adjustments: If unwanted movement of the anchorage unit occurs, adjustments may be necessary, such as changing the force system or utilizing additional anchorage methods.

Forces Required for Tooth Movements

  1. Tipping:

    • Force Required: 50-75 grams
    • Description: Tipping involves the movement of a tooth around its center of resistance, resulting in a change in the angulation of the tooth.
  2. Bodily Movement:

    • Force Required: 100-150 grams
    • Description: Bodily movement refers to the translation of a tooth in its entirety, moving it in a straight line without tipping.
  3. Intrusion:

    • Force Required: 15-25 grams
    • Description: Intrusion is the movement of a tooth into the alveolar bone, effectively reducing its height in the dental arch.
  4. Extrusion:

    • Force Required: 50-75 grams
    • Description: Extrusion involves the movement of a tooth out of the alveolar bone, increasing its height in the dental arch.
  5. Torquing:

    • Force Required: 50-75 grams
    • Description: Torquing refers to the rotational movement of a tooth around its long axis, affecting the angulation of the tooth in the buccolingual direction.
  6. Uprighting:

    • Force Required: 75-125 grams
    • Description: Uprighting is the movement of a tilted tooth back to its proper vertical position.
  7. Rotation:

    • Force Required: 50-75 grams
    • Description: Rotation involves the movement of a tooth around its long axis, changing its orientation within the dental arch.
  8. Headgear:

    • Force Required: 350-450 grams on each side
    • Duration: Minimum of 12-14 hours per day
    • Description: Headgear is used to control the growth of the maxilla and to correct dental relationships.
  9. Face Mask:

    • Force Required: 1 pound (450 grams) per side
    • Duration: 12-14 hours per day
    • Description: A face mask is used to encourage forward growth of the maxilla in cases of Class III malocclusion.
  10. Chin Cup:

    • Initial Force Required: 150-300 grams per side
    • Subsequent Force Required: 450-700 grams per side (after two months)
    • Duration: 12-14 hours per day
    • Description: A chin cup is used to control the growth of the mandible and improve facial aesthetics.

Mouth Breathing

Mouth breathing is a condition where an individual breathes primarily through the mouth instead of the nose. This habit can lead to various dental, facial, and health issues, particularly in children. The etiology of mouth breathing is often related to nasal obstruction, and it can have significant clinical features and consequences.

Etiology

  • Nasal Obstruction: Approximately 85% of mouth breathers suffer from some degree of nasal obstruction, which can be caused by:
    • Allergies: Allergic rhinitis can lead to inflammation and blockage of the nasal passages.
    • Enlarged Adenoids: Hypertrophy of the adenoids can obstruct airflow through the nasal passages.
    • Deviated Septum: A structural abnormality in the nasal septum can impede airflow.
    • Chronic Sinusitis: Inflammation of the sinuses can lead to nasal congestion and obstruction.

Clinical Features

  1. Facial Characteristics:

    • Adenoid Facies: A characteristic appearance associated with chronic mouth breathing, including:
      • Long, narrow face.
      • Narrow nose and nasal passage.
      • Short upper lip.
      • Nose tipped superiorly.
      • Expressionless or "flat" facial appearance.
  2. Dental Effects (Intraoral):

    • Protrusion of Maxillary Incisors: The anterior teeth may become protruded due to the altered position of the tongue and lips.
    • High Palatal Vault: The shape of the palate may be altered, leading to a high and narrow palatal vault.
    • Increased Incidence of Caries: Mouth breathers are more prone to dental caries due to dry oral conditions and reduced saliva flow.
    • Chronic Marginal Gingivitis: Inflammation of the gums can occur due to poor oral hygiene and dry mouth.

Management

  1. Symptomatic Treatment:

    • Gingival Health: The gingiva of mouth breathers should be restored to normal health. Coating the gingiva with petroleum jelly can help maintain moisture and protect the tissues.
    • Addressing Obstruction: If nasal or pharyngeal obstruction has been diagnosed, surgical intervention may be necessary to remove the cause (e.g., adenoidectomy, septoplasty).
  2. Elimination of the Cause:

    • Identifying and treating the underlying cause of nasal obstruction is crucial. This may involve medical management of allergies or surgical correction of anatomical issues.
  3. Interception of the Habit:

    • Physical Exercise: Encouraging physical activity can help improve overall respiratory function and promote nasal breathing.
    • Lip Exercises: Exercises to strengthen the lip muscles can help encourage lip closure and discourage mouth breathing.
    • Oral Screen: An oral screen or similar appliance can be used to promote nasal breathing by preventing the mouth from remaining open.

Bruxism

Bruxism is the involuntary grinding or clenching of teeth, often occurring during sleep (nocturnal bruxism) or while awake (awake bruxism). It can lead to various dental and health issues, including tooth wear, jaw pain, and temporomandibular joint (TMJ) disorders.

Etiology

  1. Central Nervous System (CNS):

    • Bruxism has been observed in individuals with neurological conditions such as cerebral palsy and mental retardation, suggesting a CNS component to the phenomenon.
  2. Psychological Factors:

    • Emotional disturbances such as anxiety, stress, aggression, and feelings of hunger can contribute to the tendency to grind teeth. Psychological stressors are often linked to increased muscle tension and bruxism.
  3. Occlusal Discrepancy:

    • Improper interdigitation of teeth, such as malocclusion or misalignment, can lead to bruxism as the body attempts to find a comfortable bite.
  4. Systemic Factors:

    • Nutritional deficiencies, particularly magnesium (Mg²⁺) deficiency, have been associated with bruxism. Magnesium plays a role in muscle function and relaxation.
  5. Genetic Factors:

    • There may be a hereditary component to bruxism, with a family history of the condition increasing the likelihood of its occurrence.
  6. Occupational Factors:

    • High-stress occupations or activities, such as being an overenthusiastic student or participating in competitive sports, can lead to increased clenching and grinding of teeth.

Clinical Features

  • Tooth Wear: Increased wear on the occlusal surfaces of teeth, leading to flattened or worn-down teeth.
  • Jaw Pain: Discomfort or pain in the jaw muscles, particularly in the masseter and temporalis muscles.
  • TMJ Disorders: Symptoms such as clicking, popping, or locking of the jaw, as well as pain in the TMJ area.
  • Headaches: Tension-type headaches or migraines may occur due to muscle tension associated with bruxism.
  • Facial Pain: Generalized facial pain or discomfort, particularly around the jaw and temples.
  • Gum Recession: Increased risk of gum recession and periodontal issues due to excessive force on the teeth.

Management

  1. Adjunctive Therapy:

    • Psychotherapy: Aimed at reducing emotional disturbances and stress that may contribute to bruxism. Techniques may include cognitive-behavioral therapy (CBT) or relaxation techniques.
    • Pain Management:
      • Ethyl Chloride: A topical anesthetic that can be injected into the TMJ area to alleviate pain and discomfort.
  2. Occlusal Therapy:

    • Occlusal Adjustment: Adjusting the occlusion to improve the bite and reduce bruxism.
    • Splints:
      • Volcanite Splints: These are custom-made occlusal splints that cover the occlusal surfaces of all teeth. They help reduce muscle tone and protect the teeth from wear.
      • Night Guards: Similar to splints, night guards are worn during sleep to prevent grinding and clenching.
    • Restorative Treatment: Addressing any existing dental issues, such as cavities or misaligned teeth, to improve overall dental health.
  3. Pharmacological Management:

    • Vapo Coolant: Ethyl chloride can be used for pain relief in the TMJ area.
    • Local Anesthesia: Direct injection of local anesthetics into the TMJ can provide temporary relief from pain.
    • Muscle Relaxants: Medications such as muscle tranquilizers or sedatives may be prescribed to help reduce muscle tension and promote relaxation.

Explore by Exams