NEET MDS Lessons
Orthodontics
Anchorage in orthodontics refers to the resistance that the anchorage area offers to unwanted tooth movements during orthodontic treatment. Proper understanding and application of anchorage principles are crucial for achieving desired tooth movements while minimizing undesirable effects on adjacent teeth.
Classification of Anchorage
1. According to Manner of Force Application
-
Simple Anchorage:
- Achieved by engaging a greater number of teeth than those being moved within the same dental arch.
- The combined root surface area of the anchorage unit must be at least double that of the teeth to be moved.
-
Stationary Anchorage:
- Defined as dental anchorage where the application of force tends to displace the anchorage unit bodily in the direction of the force.
- Provides greater resistance compared to anchorage that only resists tipping forces.
-
Reciprocal Anchorage:
- Refers to the resistance offered by two malposed units when equal and opposite forces are applied, moving each unit towards a more normal occlusion.
- Examples:
- Closure of a midline diastema by moving the two central incisors towards each other.
- Use of crossbite elastics and dental arch expansions.
2. According to Jaws Involved
- Intra-maxillary Anchorage:
- All units offering resistance are situated within the same jaw.
- Intermaxillary Anchorage:
- Resistance units in one jaw are used to effect tooth movement in the opposing jaw.
- Also known as Baker's anchorage.
- Examples:
- Class II elastic traction.
- Class III elastic traction.
3. According to Site
-
Intraoral Anchorage:
- Both the teeth to be moved and the anchorage areas are located within the oral cavity.
- Anatomic units include teeth, palate, and lingual alveolar bone of the mandible.
-
Extraoral Anchorage:
- Resistance units are situated outside the oral cavity.
- Anatomic units include the occiput, back of the neck, cranium, and face.
- Examples:
- Headgear.
- Facemask.
-
Muscular Anchorage:
- Utilizes forces generated by muscles to aid in tooth movement.
- Example: Lip bumper to distalize molars.
4. According to Number of Anchorage Units
-
Single or Primary Anchorage:
- A single tooth with greater alveolar support is used to move another tooth with lesser support.
-
Compound Anchorage:
- Involves more than one tooth providing resistance to move teeth with lesser support.
-
Multiple or Reinforced Anchorage:
- Utilizes more than one type of resistance unit.
- Examples:
- Extraoral forces to augment anchorage.
- Upper anterior inclined plane.
- Transpalatal arch.
Myofunctional Appliances
- Myofunctional appliances are removable or fixed devices that aim to correct dental and skeletal discrepancies by promoting proper oral and facial muscle function. They are based on the principles of myofunctional therapy, which focuses on the relationship between muscle function and dental alignment.
-
Mechanism of Action:
- These appliances work by encouraging the correct positioning of the tongue, lips, and cheeks, which can help guide the growth of the jaws and the alignment of the teeth. They can also help in retraining oral muscle habits that may contribute to malocclusion, such as thumb sucking or mouth breathing.
Types of Myofunctional Appliances
-
Functional Appliances:
- Bionator: A removable appliance that encourages forward positioning of the mandible and helps in correcting Class II malocclusions.
- Frankel Appliance: A removable appliance that modifies the position of the dental arches and improves facial aesthetics by influencing muscle function.
- Activator: A functional appliance that promotes mandibular growth and corrects dental relationships by positioning the mandible forward.
-
Tongue Retainers:
- Devices designed to maintain the tongue in a specific position, often used to correct tongue thrusting habits that can lead to malocclusion.
-
Mouthguards:
- While primarily used for protection during sports, certain types of mouthguards can also be designed to promote proper tongue posture and prevent harmful oral habits.
-
Myobrace:
- A specific type of myofunctional appliance that is used to correct dental alignment and improve oral function by encouraging proper tongue posture and lip closure.
Indications for Use
- Malocclusions: Myofunctional appliances are often indicated for treating Class II and Class III malocclusions, as well as other dental alignment issues.
- Oral Habits: They can help in correcting harmful oral habits such as thumb sucking, tongue thrusting, and mouth breathing.
- Facial Growth Modification: These appliances can be used to influence the growth of the jaws in growing children, promoting a more favorable dental and facial relationship.
- Improving Oral Function: They can enhance functions such as chewing, swallowing, and speech by promoting proper muscle coordination.
Advantages of Myofunctional Appliances
- Non-Invasive: Myofunctional appliances are generally non-invasive and can be a more comfortable option for patients compared to fixed appliances.
- Promotes Natural Growth: They can guide the natural growth of the jaws and teeth, making them particularly effective in growing children.
- Improves Oral Function: By retraining oral muscle function, these appliances can enhance overall oral health and function.
- Aesthetic Appeal: Many myofunctional appliances are less noticeable than traditional braces, which can be more appealing to patients.
Limitations of Myofunctional Appliances
- Compliance Dependent: The effectiveness of myofunctional appliances relies heavily on patient compliance. Patients must wear the appliance as prescribed for optimal results.
- Limited Scope: While effective for certain types of malocclusions, myofunctional appliances may not be suitable for all cases, particularly those requiring significant tooth movement or surgical intervention.
- Adjustment Period: Patients may experience discomfort or difficulty adjusting to the appliance initially, which can affect compliance.
Steiner's Analysis
Steiner's analysis is a widely recognized cephalometric method used in orthodontics to evaluate the relationships between the skeletal and dental structures of the face. Developed by Dr. Charles A. Steiner in the 1950s, this analysis provides a systematic approach to assess craniofacial morphology and is particularly useful for treatment planning and evaluating the effects of orthodontic treatment.
Key Features of Steiner's Analysis
-
Reference Planes and Points:
- Sella (S): The midpoint of the sella turcica, a bony structure in the skull.
- Nasion (N): The junction of the frontal and nasal bones.
- A Point (A): The deepest point on the maxillary arch between the anterior nasal spine and the maxillary alveolar process.
- B Point (B): The deepest point on the mandibular arch between the anterior nasal spine and the mandibular alveolar process.
- Menton (Me): The lowest point on the symphysis of the mandible.
- Gnathion (Gn): The midpoint between Menton and Pogonion (the most anterior point on the chin).
- Pogonion (Pog): The most anterior point on the contour of the chin.
-
Reference Lines:
- SN Plane: A line drawn from Sella to Nasion, representing the cranial base.
- ANB Angle: The angle formed between the lines connecting A Point to Nasion and B Point to Nasion. It indicates the relationship between the maxilla and mandible.
- Facial Plane (FP): A line drawn from Gonion (Go) to Menton (Me), used to assess the facial profile.
-
Key Measurements:
- ANB Angle: Indicates the anteroposterior
relationship between the maxilla and mandible.
- Normal Range: Typically between 2° and 4°.
- SN-MP Angle: The angle between the SN plane and the
mandibular plane (MP), which helps assess the vertical position of the
mandible.
- Normal Range: Usually between 32° and 38°.
- Wits Appraisal: The distance between the perpendiculars dropped from points A and B to the occlusal plane. It provides insight into the anteroposterior relationship of the dental bases.
- ANB Angle: Indicates the anteroposterior
relationship between the maxilla and mandible.
Clinical Relevance
- Diagnosis and Treatment Planning: Steiner's analysis helps orthodontists diagnose skeletal discrepancies and plan appropriate treatment strategies. It provides a clear understanding of the patient's craniofacial relationships, which is essential for effective orthodontic intervention.
- Monitoring Treatment Progress: By comparing pre-treatment and post-treatment cephalometric measurements, orthodontists can evaluate the effectiveness of the treatment and make necessary adjustments.
- Predicting Treatment Outcomes: The analysis aids in predicting the outcomes of orthodontic treatment by assessing the initial skeletal and dental relationships.
Quad helix appliance is an orthodontic device used to expand the upper arch of teeth. It is typically cemented to the molars and features a U-shaped stainless steel wire with active helix springs, helping to correct issues like crossbites, narrow jaws, and crowded teeth. ### Components of the Quad Helix Appliance
-
Helix Springs:
- The appliance contains two or four active helix springs that exert gentle pressure to widen the dental arch.
-
Bands:
- It is attached to the molars using bands, which provide a stable anchor for the appliance.
-
Wire Framework:
- Made from 38 mil stainless steel wire, the framework allows for customization and adjustment by the orthodontist.
Functions of the Quad Helix Appliance
-
Arch Expansion:
- The primary function is to gradually widen the upper arch, creating more space for crowded teeth.
-
Correction of Crossbites:
- It helps in correcting posterior crossbites, where the lower teeth are positioned outside the upper teeth.
-
Molar Stabilization:
- The appliance stabilizes the molars in their correct position during treatment.
Indications for Use
-
Narrow Upper Jaw:
- Ideal for patients with a constricted upper arch.
-
Crowded Teeth:
- Used when there is insufficient space for teeth to align properly.
-
Class II and Class III Cases:
- Effective in treating specific malocclusions that require arch expansion.
Advantages of the Quad Helix Appliance
-
Non-Invasive:
- It is a non-surgical option for expanding the dental arch.
-
Fixed Design:
- As a fixed appliance, it does not rely on patient compliance for activation.
-
Customizable:
- The design allows for adjustments to meet individual patient needs.
Limitations of the Quad Helix Appliance
-
Initial Discomfort:
- Patients may experience mild discomfort or pressure during the first few weeks of use.
-
Oral Hygiene Challenges:
- Maintaining oral hygiene can be more difficult, requiring diligent cleaning around the appliance.
-
Adjustment Period:
- It may take time for patients to adapt to speaking and swallowing with the appliance in place.
BONES OF THE SKULL
A) Bones of the cranial base:
A) Fontal (1)
B) Ethmoid (1)
C) Sphenoid (1)
D) Occipital (1)
B) Bones of the cranial vault:
1. Parietal (2)
2. Temporal (2)
C) Bones of the face:
Maxilla (2)
Mandible (1)
Nasal bone (2)
Lacrimal bone (2)
Zygomatic bone (2)
Palatine bone(2)
Infra nasal concha (2)
FUSION BETWEEN BONES
1. Syndesmosis: Membranous or ligamentus eg. Sutural point.
2. Synostosis: Bony union eg. symphysis menti.
3. Synchondrosis: Cartilaginous eg. sphenoccipital, spheno-ethmoidal.
GROWTH OF THE SKULL:
A) Cranium: 1. Base 2. Vault
B) Face: 1. Upper face 2.Lower face
CRANIAL BASE:
Cranial base grows at different cartilaginous suture. The cranial base may be divided into 3 areas.
1. The posterior part which extends from the occiput to the salatercica. The most important growth site spheno-occipital synchondrosis is situated here. It is active throughout the growing period and does not close until early adult life.
2. The middle portion extends from sella to foramen cecum and the sutural growth spheno-ethmoidal synchondrosis is situated here. The exact time of closing is not known but probably at the age of 7 years.
3. The anterior part is from foramen cecum and grows by surface deposition of bone in the frontal region and simultaneous development of frontal sinus.
CRANIAL VAULT:
The cranial vault grows as the brain grows. It is accelerated at infant. The growth is complete by 90% by the end of 5th year. At birth the sutures are wide sufficiently and become approximated during the 1st 2 years of life.
The development and extension of frontal sinus takes place particularly at the age of puberty and there is deposition of bone on the surfaces of cranial bone.
Types of Fixed Orthodontic Appliances
-
Braces:
- Traditional Metal Braces: Composed of metal brackets bonded to the teeth, connected by archwires. They are the most common type of fixed appliance.
- Ceramic Braces: Similar to metal braces but made of tooth-colored or clear materials, making them less visible.
- Lingual Braces: Brackets are placed on the inner surface of the teeth, making them invisible from the outside.
-
Self-Ligating Braces:
- These braces use a specialized clip mechanism to hold the archwire in place, eliminating the need for elastic or metal ligatures. They can reduce friction and may allow for faster tooth movement.
-
Space Maintainers:
- Fixed appliances used to hold space for permanent teeth when primary teeth are lost prematurely. They are typically bonded to adjacent teeth.
-
Temporary Anchorage Devices (TADs):
- Small screws or plates that are temporarily placed in the bone to provide additional anchorage for tooth movement. They help in achieving specific movements without unwanted tooth movement.
-
Palatal Expanders:
- Fixed appliances used to widen the upper jaw (maxilla) by applying pressure to the molars. They are often used in growing patients to correct crossbites or narrow arches.
Components of Fixed Orthodontic Appliances
- Brackets: Small metal or ceramic attachments bonded to the teeth. They hold the archwire in place and guide tooth movement.
- Archwires: Thin metal wires that connect the brackets and apply pressure to the teeth. They come in various materials and sizes, and their shape can be adjusted to achieve desired movements.
- Ligatures: Small elastic or metal ties that hold the archwire to the brackets. In self-ligating braces, ligatures are not needed.
- Bands: Metal rings that are cemented to the molars to provide anchorage for the appliance. They may have attachments for brackets or other components.
- Hooks and Accessories: Additional components that can be attached to brackets or bands to facilitate the use of elastics or other auxiliary devices.
Indications for Use
- Correction of Malocclusions: Fixed appliances are commonly used to treat various types of malocclusions, including crowding, spacing, overbites, underbites, and crossbites.
- Tooth Movement: They are effective for moving teeth into desired positions, including tipping, bodily movement, and rotation.
- Retention: Fixed retainers may be used after active treatment to maintain the position of teeth.
- Jaw Relationship Modification: Fixed appliances can help in correcting skeletal discrepancies and improving the relationship between the upper and lower jaws.
Advantages of Fixed Orthodontic Appliances
- Continuous Force Application: Fixed appliances provide a constant force on the teeth, allowing for more predictable and efficient tooth movement.
- Effective for Complex Cases: They are suitable for treating a wide range of orthodontic issues, including severe malocclusions that may not be effectively treated with removable appliances.
- Patient Compliance: Since they are fixed, there is no reliance on patient compliance for wearing the appliance, which can lead to more consistent treatment outcomes.
- Variety of Options: Patients can choose from various types of braces (metal, ceramic, lingual) based on their aesthetic preferences.
Disadvantages of Fixed Orthodontic Appliances
- Oral Hygiene Challenges: Fixed appliances can make it more difficult to maintain oral hygiene, increasing the risk of plaque accumulation, cavities, and gum disease.
- Discomfort: Patients may experience discomfort or soreness after adjustments, especially in the initial stages of treatment.
- Dietary Restrictions: Certain foods (hard, sticky, or chewy) may need to be avoided to prevent damage to the appliances.
- Duration of Treatment: Treatment with fixed appliances can take several months to years, depending on the complexity of the case.
Ashley Howe’s Analysis of Tooth Crowding
Introduction
Today, we will discuss Ashley Howe’s analysis, which provides valuable insights into the causes of tooth crowding and the relationship between dental arch dimensions and tooth size. Howe’s work emphasizes the importance of arch width over arch length in understanding dental crowding.
Key Concepts
Tooth Crowding
- Definition: Tooth crowding refers to the lack of space in the dental arch for all teeth to fit properly.
- Howe’s Perspective: Howe posited that tooth crowding is primarily due to a deficiency in arch width rather than arch length.
Relationship Between Tooth Size and Arch Width
- Howe identified a significant relationship between the total mesiodistal diameter of teeth anterior to the second permanent molar and the width of the dental arch in the first premolar region. This relationship is crucial for understanding how tooth size can impact arch dimensions and overall dental alignment.
Procedure for Analysis
To conduct Ashley Howe’s analysis, the following measurements must be obtained:
-
Percentage of PMD to TTMPMD X 100TTM
-
Percentage of PMBAW to TTMPMBAW X 100TTM
-
Percentage of BAL to TTM: [ \text{Percentage of BAL} = \left( \frac{\text{BAL}}{\text{TTM}} \right) \times 100 ]
Where:
- PMD = Total mesiodistal diameter of teeth anterior to the second permanent molar.
- PMBAW = Premolar basal arch width.
- BAL = Basal arch length.
- TTM = Total tooth mesiodistal measurement.
Inferences from the Analysis
The results of the measurements can lead to several important inferences regarding treatment options for tooth crowding:
-
If PMBAW > PMD:
- This indicates that the basal arch is sufficient to allow for the expansion of the premolars. In this case, expansion may be a viable treatment option.
-
If PMD > PMBAW:
- This scenario can lead to three possible treatment options:
- Contraindicated for Expansion: Expansion may not be advisable.
- Move Teeth Distally: Consideration for distal movement of teeth to create space.
- Extract Some Teeth: Extraction may be necessary to alleviate crowding.
- This scenario can lead to three possible treatment options:
-
If PMBAW X 100 / TTM:
- Less than 37%: Extraction is likely required.
- 44%: This is considered an ideal case where extraction is not necessary.
- Between 37% and 44%: This is a borderline case where extraction may or may not be required, necessitating further evaluation.