NEET MDS Lessons
Orthodontics
Types of Forces in Tooth Movement
-
Light Forces:
- Forces that are gentle and continuous, typically in the range of 50-100 grams.
- Effect: Light forces are ideal for orthodontic tooth movement as they promote biological responses without causing damage to the periodontal ligament or surrounding bone.
- Examples: Springs, elastics, and aligners.
-
Heavy Forces:
- Forces that exceed the threshold of light forces, often greater than 200 grams.
- Effect: Heavy forces can lead to rapid tooth movement but may cause damage to the periodontal tissues, including root resorption and loss of anchorage.
- Examples: Certain types of fixed appliances or excessive activation of springs.
-
Continuous Forces:
- Forces that are applied consistently over time.
- Effect: Continuous forces are essential for effective tooth movement, as they maintain the pressure-tension balance in the periodontal ligament.
- Examples: Archwires in fixed appliances or continuous elastic bands.
-
Intermittent Forces:
- Forces that are applied in a pulsed or periodic manner.
- Effect: Intermittent forces can be effective in certain situations but may not provide the same level of predictability in tooth movement as continuous forces.
- Examples: Temporary anchorage devices (TADs) that are activated periodically.
-
Directional Forces:
- Forces applied in specific directions to achieve desired tooth movement.
- Effect: The direction of the force is critical in determining the type of movement (e.g., tipping, bodily movement, rotation) that occurs.
- Examples: Using springs or elastics to move teeth mesially, distally, buccally, or lingually.
Tongue Thrust
Tongue thrust is characterized by the forward movement of the tongue tip between the teeth to meet the lower lip during swallowing and speech, resulting in an interdental position of the tongue (Tulley, 1969). This habit can lead to various dental and orthodontic issues, particularly malocclusions such as anterior open bite.
Etiology of Tongue Thrust
-
Retained Infantile Swallow:
- The tongue does not drop back as it should after the eruption of incisors, continuing to thrust forward during swallowing.
-
Upper Respiratory Tract Infection:
- Conditions such as mouth breathing and allergies can contribute to tongue thrusting behavior.
-
Neurological Disturbances:
- Issues such as hyposensitivity of the palate or disruption of sensory control and coordination during swallowing can lead to tongue thrust.
-
Feeding Practices:
- Bottle feeding is more likely to contribute to the development of tongue thrust compared to breastfeeding.
-
Induced by Other Oral Habits:
- Habits like thumb sucking or finger sucking can create malocclusions (e.g., anterior open bite), leading to the tongue protruding between the anterior teeth during swallowing.
-
Hereditary Factors:
- A family history of tongue thrusting or related oral habits may contribute to the development of the condition.
-
Tongue Size:
- Conditions such as macroglossia (enlarged tongue) can predispose individuals to tongue thrusting.
Clinical Features
Extraoral
- Lip Posture: Increased lip separation both at rest and during function.
- Mandibular Movement: The path of mandibular movement is upward and backward, with the tongue moving forward.
- Speech: Articulation problems, particularly with sounds such as /s/, /n/, /t/, /d/, /l/, /th/, /z/, and /v/.
- Facial Form: Increased anterior facial height may be observed.
Intraoral
- Tongue Posture: The tongue tip is lower at rest due to the presence of an anterior open bite.
- Malocclusion:
- Maxilla:
- Proclination of maxillary anterior teeth.
- Increased overjet.
- Maxillary constriction.
- Generalized spacing between teeth.
- Mandible:
- Retroclination of mandibular teeth.
- Maxilla:
Diagnosis
History
- Family History: Determine the swallow patterns of siblings and parents to check for hereditary factors.
- Medical History: Gather information regarding upper respiratory infections and sucking habits.
- Patient Motivation: Assess the patient’s overall abilities, interests, and motivation for treatment.
Examination
-
Swallowing Assessment:
- Normal Swallowing:
- Lips touch tightly.
- Mandible rises as teeth come together.
- Facial muscles show no marked contraction.
- Abnormal Swallowing:
- Teeth remain apart.
- Lips do not touch.
- Facial muscles show marked contraction.
- Normal Swallowing:
-
Inhibition Test:
- Lightly hold the lower lip with a thumb and finger while the patient is asked to swallow water.
- Normal Swallowing: The patient can swallow normally.
- Abnormal Swallowing: The swallow is inhibited, requiring strong mentalis and lip contraction for mandibular stabilization, leading to water spilling from the mouth.
Management
-
Behavioral Therapy:
- Awareness Training: Educate the patient about the habit and its effects on oral health.
- Positive Reinforcement: Encourage the patient to practice proper swallowing techniques and reward progress.
-
Myofunctional Therapy:
- Involves exercises to improve tongue posture and function, helping to retrain the muscles involved in swallowing and speech.
-
Orthodontic Treatment:
- If malocclusion is present, orthodontic intervention may be necessary to correct the dental alignment and occlusion.
- Appliances such as a palatal crib or tongue thrusting appliances can be used to discourage the habit.
-
Speech Therapy:
- If speech issues are present, working with a speech therapist can help address articulation problems and improve speech clarity.
-
Monitoring and Follow-Up:
- Regular follow-up appointments to monitor progress and make necessary adjustments to the treatment plan.
Types of Springs
In orthodontics, various types of springs are utilized to achieve specific tooth movements. Each type of spring has unique characteristics and applications. Below are a few examples of commonly used springs in orthodontic appliances:
1. Finger Spring
- Construction: Made from 0.5 mm stainless steel wire.
- Components:
- Helix: 2 mm in diameter.
- Active Arm: The part that exerts force on the tooth.
- Retentive Arm: Helps retain the appliance in place.
- Placement: The helix is positioned opposite to the direction of the intended tooth movement and should be aligned along the long axis of the tooth, perpendicular to the direction of movement.
- Indication: Primarily used for mesio-distal movement of teeth, such as closing anterior diastemas.
- Activation: Achieved by opening the coil or moving the active arm towards the tooth to be moved by 2-3 mm.
2. Z-Spring (Double Cantilever)
- Construction: Comprises two helices of small diameter, suitable for one or more incisors.
- Positioning: The spring is positioned perpendicular to the palatal surface of the tooth, with a long retentive arm.
- Preparation: The Z-spring needs to be boxed in wax prior to acrylization.
- Indication: Used to move one or more teeth in the same direction, such as proclining two or more upper incisors to correct anterior tooth crossbites. It can also correct mild rotation if only one helix is activated.
- Activation: Achieved by opening both helices up to 2 mm at a time.
3. Cranked Single Cantilever Spring
- Construction: Made from 0.5 mm wire.
- Design: The spring consists of a coil located close to its emergence from the base plate. It is cranked to keep it clear of adjacent teeth.
- Indication: Primarily used to move teeth labially.
4. T Spring
- Construction: Made from 0.5 mm wire.
- Design: The spring consists of a T-shaped arm, with the arms embedded in acrylic.
- Indication: Used for buccal movement of premolars and some canines.
- Activation: Achieved by pulling the free end of the spring toward the intended direction of tooth movement.
5. Coffin Spring
- Construction: Made from 1.2 mm wire.
- Design: Consists of a U or omega-shaped wire placed in the midpalatal region, with a retentive arm incorporated into the base plates.
- Retention: Retained by Adams clasps on molars.
- Indication: Used for slow dentoalveolar arch expansion in patients with upper arch constriction or in cases of unilateral crossbite.
Orthopaedic appliances in dentistry are devices used to modify the growth of the jaws and align teeth by applying specific forces. These appliances utilize light orthodontic forces (50-100 grams) for tooth movement and orthopedic forces to induce skeletal changes, effectively guiding dental and facial development.
Orthopaedic appliances are designed to correct skeletal discrepancies and improve dental alignment by applying forces to the jaws and teeth. They are particularly useful in growing patients to influence jaw growth and positioning.
-
Types of Orthopaedic Appliances:
- Headgear: Used to correct overbites and underbites by applying force to the upper jaw.
- Protraction Face Mask: Applies anterior force to the maxilla to correct retrusion.
- Chin Cup: Restricts forward and downward growth of the mandible.
- Functional Appliances: Such as the Herbst appliance, which helps in correcting overbites by repositioning the jaw.
Mechanisms of Action
- Force Application: Orthopaedic appliances apply heavy forces (300-500 grams) to the skeletal structures, which can alter the magnitude and direction of bone growth.
- Anchorage: These appliances often use teeth as handles to transmit forces to the underlying skeletal structures, requiring adequate anchorage from extraoral sites like the skull or neck.
- Intermittent Forces: The use of intermittent heavy forces is crucial, as it allows for skeletal changes while minimizing dental movement.
Indications for Use
- Skeletal Malocclusions: Effective for treating Class II and Class III malocclusions.
- Growth Modification: Used to guide the growth of the maxilla and mandible in children and adolescents.
- Space Management: Helps in creating space for proper alignment of teeth and preventing crowding.
Advantages of Orthopaedic Appliances
- Non-Surgical Option: Provides a non-invasive alternative to surgical interventions for correcting skeletal discrepancies.
- Guides Growth: Can effectively guide the growth of the jaws, leading to improved facial aesthetics and function.
- Versatile Applications: Suitable for a variety of orthodontic issues, including overbites, underbites, and crossbites.
Limitations of Orthopaedic Appliances
- Patient Compliance: The success of treatment heavily relies on patient adherence to wearing the appliance as prescribed.
- Discomfort: Patients may experience discomfort or difficulty adjusting to the appliance initially.
- Limited Effectiveness: May not be suitable for all cases, particularly those requiring significant tooth movement or complex surgical corrections.
Lip Bumper
A lip bumper is an orthodontic appliance designed to create space in the dental arch by preventing the lips from exerting pressure on the teeth. It is primarily used in growing children and adolescents to manage dental arch development, particularly in cases of crowding or to facilitate the eruption of permanent teeth. The appliance is typically used in the lower arch but can also be adapted for the upper arch.
Indications for Use
-
Crowding:
- To create space in the dental arch for the proper alignment of teeth, especially when there is insufficient space for the eruption of permanent teeth.
-
Anterior Crossbite:
- To help correct anterior crossbites by allowing the anterior teeth to move into a more favorable position.
-
Eruption Guidance:
- To guide the eruption of permanent molars and prevent them from drifting mesially, which can lead to malocclusion.
-
Preventing Lip Pressure:
- To reduce the pressure exerted by the lips on the anterior teeth, which can contribute to dental crowding and misalignment.
-
Space Maintenance:
- To maintain space in the dental arch after the premature loss of primary teeth.
Design and Features
-
Components:
- The lip bumper consists of a wire framework that is typically made
of stainless steel or other durable materials. It includes:
- Buccal Tubes: These are attached to the molars to anchor the appliance in place.
- Arch Wire: A flexible wire that runs along the buccal side of the teeth, providing the necessary space and support.
- Lip Pad: A soft pad that rests against the lips, preventing them from exerting pressure on the teeth.
- The lip bumper consists of a wire framework that is typically made
of stainless steel or other durable materials. It includes:
-
Customization:
- The appliance is custom-fitted to the patient’s dental arch to ensure comfort and effectiveness. Adjustments can be made to accommodate changes in the dental arch as treatment progresses.
Mechanism of Action
-
Space Creation:
- The lip bumper creates space in the dental arch by pushing the anterior teeth backward and allowing the posterior teeth to erupt properly. The lip pad prevents the lips from applying pressure on the anterior teeth, which can help maintain the space created.
-
Guiding Eruption:
- By maintaining the position of the molars and preventing mesial drift, the lip bumper helps guide the eruption of the permanent molars into their proper positions.
-
Facilitating Growth:
- The appliance can also promote the growth of the dental arch, allowing for better alignment of the teeth as they erupt.
Factors to Consider in Designing a Spring for Orthodontic Appliances
In orthodontics, the design of springs is critical for achieving effective tooth movement while ensuring patient comfort. Several factors must be considered when designing a spring to optimize its performance and functionality. Below, we will discuss these factors in detail.
1. Diameter of Wire
- Flexibility: The diameter of the wire used in the spring significantly influences its flexibility. A thinner wire will yield a more flexible spring, allowing for greater movement and adaptability.
- Force Delivery: The relationship between wire diameter and force delivery is crucial. A thicker wire will produce a stiffer spring, which may be necessary for certain applications but can limit flexibility.
2. Force Delivered by the Spring
-
Formula: The force (F) delivered by a spring can be expressed by the formula: [ $$F \propto \frac{d^4}{l^3} $$] Where:
- ( F ) = force applied by the spring
- ( d ) = diameter of the wire
- ( l ) = length of the wire
-
Implications: This formula indicates that the force exerted by the spring is directly proportional to the fourth power of the diameter of the wire and inversely proportional to the cube of the length of the wire. Therefore, small changes in wire diameter can lead to significant changes in force delivery.
3. Length of Wire
- Flexibility and Force: Increasing the length of the wire decreases the force exerted by the spring. Longer springs are generally more flexible and can remain active for extended periods.
- Force Reduction: By doubling the length of the wire, the force can be reduced by a factor of eight. This principle is essential when designing springs for specific tooth movements that require gentler forces.
4. Patient Comfort
- Design Considerations: The design, shape, size, and force generation of the spring must prioritize patient comfort. A well-designed spring should not cause discomfort or irritation to the oral tissues.
- Customization: Springs may need to be customized to fit the individual patient's anatomy and treatment needs, ensuring that they are comfortable during use.
5. Direction of Tooth Movement
- Point of Contact: The direction of tooth movement is determined by the point of contact between the spring and the tooth. Proper placement of the spring is essential for achieving the desired movement.
- Placement Considerations:
- Palatally Placed Springs: These are used for labial (toward the lips) and mesio-distal (toward the midline) tooth movements.
- Buccally Placed Springs: These are employed when the tooth needs to be moved palatally and in a mesio-distal direction.
Transpalatal Arch (TPA) is an orthodontic appliance used primarily in the upper arch to provide stability, maintain space, and facilitate tooth movement. It is a fixed appliance that connects the maxillary molars across the palate, and it is commonly used in various orthodontic treatments, particularly in conjunction with other appliances.
Components of the Transpalatal Arch
-
Main Wire:
- The TPA consists of a curved wire that spans the palate, typically made of stainless steel or a similar material. The wire is shaped to fit the contour of the palate and is usually 0.036 inches in diameter.
-
Attachments:
- The ends of the wire are attached to the bands or brackets on the maxillary molars. These attachments can be soldered or welded to the bands, ensuring a secure connection.
-
Adjustment Mechanism:
- Some TPAs may include loops or bends that can be adjusted to apply specific forces to the teeth, allowing for controlled movement.
Functions of the Transpalatal Arch
-
Stabilization:
- The TPA provides anchorage and stability to the posterior teeth, preventing unwanted movement during orthodontic treatment. It helps maintain the position of the molars and can prevent them from drifting.
-
Space Maintenance:
- The TPA can be used to maintain space in the upper arch, especially after the premature loss of primary molars or in cases of crowding.
-
Tooth Movement:
- The appliance can facilitate the movement of teeth, particularly the molars, by applying gentle forces. It can be used to correct crossbites or to expand the arch.
-
Support for Other Appliances:
- The TPA can serve as a support structure for other orthodontic appliances, such as expanders or functional appliances, enhancing their effectiveness.
Indications for Use
- Space Maintenance: To hold space for permanent teeth when primary teeth are lost prematurely.
- Crossbite Correction: To help correct posterior crossbites by repositioning the molars.
- Arch Expansion: In conjunction with other appliances, the TPA can assist in expanding the dental arch.
- Stabilization During Treatment: To provide anchorage and prevent unwanted movement of the molars during orthodontic treatment.
Advantages of the Transpalatal Arch
- Fixed Appliance: Being a fixed appliance, the TPA does not require patient compliance, ensuring consistent force application.
- Versatility: The TPA can be used in various treatment scenarios, making it a versatile tool in orthodontics.
- Minimal Discomfort: Generally, the TPA is well-tolerated by patients and does not cause significant discomfort.
Limitations of the Transpalatal Arch
- Limited Movement: The TPA primarily affects the molars and may not be effective for moving anterior teeth.
- Adjustment Needs: While the TPA can be adjusted, it may require periodic visits to the orthodontist for modifications.
- Oral Hygiene: As with any fixed appliance, maintaining oral hygiene can be more challenging, and patients must be diligent in their oral care.