Talk to us?

Orthodontics - NEETMDS- courses
NEET MDS Lessons
Orthodontics

Key Cephalometric Landmarks

  1. Sella (S):

    • The midpoint of the sella turcica, a bony structure located at the base of the skull. It serves as a central reference point in cephalometric analysis.
  2. Nasion (N):

    • The junction of the frontal and nasal bones, located at the bridge of the nose. It is often used as a reference point for the anterior cranial base.
  3. A Point (A):

    • The deepest point on the maxillary arch, located between the anterior nasal spine and the maxillary alveolar process. It is crucial for assessing maxillary position.
  4. B Point (B):

    • The deepest point on the mandibular arch, located between the anterior nasal spine and the mandibular alveolar process. It is important for evaluating mandibular position.
  5. Pogonion (Pog):

    • The most anterior point on the contour of the chin. It is used to assess the position of the mandible in relation to the maxilla.
  6. Gnathion (Gn):

    • The midpoint between Menton and Pogonion, representing the most inferior point of the mandible. It is used in various angular measurements.
  7. Menton (Me):

    • The lowest point on the symphysis of the mandible. It is used as a reference for vertical measurements.
  8. Go (Gonion):

    • The midpoint of the contour of the ramus and the body of the mandible. It is used to assess the angle of the mandible.
  9. Frankfort Horizontal Plane (FH):

    • A plane defined by the points of the external auditory meatus (EAM) and the lowest point of the orbit (Orbitale). It is used as a reference plane for various measurements.
  10. Orbitale (Or):

    • The lowest point on the inferior margin of the orbit (eye socket). It is used in conjunction with the EAM to define the Frankfort Horizontal Plane.
  11. Ectocanthion (Ec):

    • The outer canthus of the eye, used in facial measurements and assessments.
  12. Endocanthion (En):

    • The inner canthus of the eye, also used in facial measurements.
  13. Alveolar Points:

    • Points on the alveolar ridge of the maxilla and mandible, often used to assess the position of the teeth.

Importance of Cephalometric Landmarks

  • Diagnosis: These landmarks help orthodontists diagnose skeletal and dental discrepancies, such as Class I, II, or III malocclusions.
  • Treatment Planning: By understanding the relationships between these landmarks, orthodontists can develop effective treatment plans tailored to the individual patient's needs.
  • Monitoring Progress: Cephalometric landmarks allow for the comparison of pre-treatment and post-treatment radiographs, helping to evaluate the effectiveness of orthodontic interventions.
  • Research and Education: These landmarks are essential in orthodontic research and education, providing a standardized method for analyzing craniofacial morphology.

Ashley Howe’s Analysis of Tooth Crowding

Introduction

Today, we will discuss Ashley Howe’s analysis, which provides valuable insights into the causes of tooth crowding and the relationship between dental arch dimensions and tooth size. Howe’s work emphasizes the importance of arch width over arch length in understanding dental crowding.

Key Concepts

Tooth Crowding

  • Definition: Tooth crowding refers to the lack of space in the dental arch for all teeth to fit properly.
  • Howe’s Perspective: Howe posited that tooth crowding is primarily due to a deficiency in arch width rather than arch length.

Relationship Between Tooth Size and Arch Width

  • Howe identified a significant relationship between the total mesiodistal diameter of teeth anterior to the second permanent molar and the width of the dental arch in the first premolar region. This relationship is crucial for understanding how tooth size can impact arch dimensions and overall dental alignment.

Procedure for Analysis

To conduct Ashley Howe’s analysis, the following measurements must be obtained:

  1. Percentage of PMD to TTM
    PMD X 100
          TTM
  2. Percentage of PMBAW to TTM
    PMBAW X 100
        TTM
  3. Percentage of BAL to TTM: [ \text{Percentage of BAL} = \left( \frac{\text{BAL}}{\text{TTM}} \right) \times 100 ]

Where:

  • PMD = Total mesiodistal diameter of teeth anterior to the second permanent molar.
  • PMBAW = Premolar basal arch width.
  • BAL = Basal arch length.
  • TTM = Total tooth mesiodistal measurement.

Inferences from the Analysis

The results of the measurements can lead to several important inferences regarding treatment options for tooth crowding:

  1. If PMBAW > PMD:

    • This indicates that the basal arch is sufficient to allow for the expansion of the premolars. In this case, expansion may be a viable treatment option.
  2. If PMD > PMBAW:

    • This scenario can lead to three possible treatment options:
      1. Contraindicated for Expansion: Expansion may not be advisable.
      2. Move Teeth Distally: Consideration for distal movement of teeth to create space.
      3. Extract Some Teeth: Extraction may be necessary to alleviate crowding.
  3. If PMBAW X 100 / TTM:

    • Less than 37%: Extraction is likely required.
    • 44%: This is considered an ideal case where extraction is not necessary.
    • Between 37% and 44%: This is a borderline case where extraction may or may not be required, necessitating further evaluation.

Headgear is an extraoral orthodontic appliance used to correct dental and skeletal discrepancies, particularly in growing patients. It is designed to apply forces to the teeth and jaws to achieve specific orthodontic goals, such as correcting overbites, underbites, and crossbites, as well as guiding the growth of the maxilla (upper jaw) and mandible (lower jaw). Below is an overview of headgear, its types, mechanisms of action, indications, advantages, and limitations.

Types of Headgear

  1. Class II Headgear:

    • Description: This type is used primarily to correct Class II malocclusions, where the upper teeth are positioned too far forward relative to the lower teeth.
    • Mechanism: It typically consists of a facebow that attaches to the maxillary molars and is anchored to a neck strap or a forehead strap. The appliance applies a backward force to the maxilla, helping to reposition it and/or retract the upper incisors.
  2. Class III Headgear:

    • Description: Used to correct Class III malocclusions, where the lower teeth are positioned too far forward relative to the upper teeth.
    • Mechanism: This type of headgear may use a reverse-pull face mask that applies forward and upward forces to the maxilla, encouraging its growth and improving the relationship between the upper and lower jaws.
  3. Cervical Headgear:

    • Description: This type is used to control the growth of the maxilla and is often used in conjunction with other orthodontic appliances.
    • Mechanism: It consists of a neck strap that connects to a facebow, applying forces to the maxilla to restrict its forward growth while allowing the mandible to grow.
  4. High-Pull Headgear:

    • Description: This type is used to control the vertical growth of the maxilla and is often used in cases with deep overbites.
    • Mechanism: It features a head strap that connects to the facebow and applies upward and backward forces to the maxilla.

Mechanism of Action

  • Force Application: Headgear applies extraoral forces to the teeth and jaws, influencing their position and growth. The forces can be directed to:
    • Restrict maxillary growth: In Class II cases, headgear can help prevent the maxilla from growing too far forward.
    • Promote maxillary growth: In Class III cases, headgear can encourage forward growth of the maxilla.
    • Reposition teeth: By applying forces to the molars, headgear can help align the dental arches and improve occlusion.

Indications for Use

  • Class II Malocclusion: To correct overbites and improve the relationship between the upper and lower teeth.
  • Class III Malocclusion: To promote the growth of the maxilla and improve the occlusal relationship.
  • Crowding: To create space for teeth by retracting the upper incisors.
  • Facial Aesthetics: To improve the overall facial profile and aesthetics by modifying jaw relationships.

Advantages of Headgear

  1. Non-Surgical Option: Provides a way to correct skeletal discrepancies without the need for surgical intervention.
  2. Effective for Growth Modification: Particularly useful in growing patients, as it can influence the growth of the jaws.
  3. Improves Aesthetics: Can enhance facial aesthetics by correcting jaw relationships and improving the smile.

Limitations of Headgear

  1. Patient Compliance: The effectiveness of headgear relies heavily on patient compliance. Patients must wear the appliance as prescribed (often 12-14 hours a day) for optimal results.
  2. Discomfort: Patients may experience discomfort or soreness when first using headgear, which can affect compliance.
  3. Adjustment Period: It may take time for patients to adjust to wearing headgear, and they may need guidance on how to use it properly.
  4. Limited Effectiveness in Adults: While headgear is effective in growing patients, its effectiveness may be limited in adults due to the maturity of the skeletal structures.

Angle’s Classification of Malocclusion

Malocclusion refers to the misalignment or incorrect relationship between the teeth of the two dental arches when they come into contact as the jaws close. Understanding occlusion is essential for diagnosing and treating orthodontic issues.

Definitions

  • Occlusion: The contact between the teeth in the mandibular arch and those in the maxillary arch during functional relations (Wheeler’s definition).
  • Malocclusion: A condition characterized by a deflection from the normal relation of the teeth to other teeth in the same arch and/or to teeth in the opposing arch (Gardiner, White & Leighton).

Importance of Classification

Classifying malocclusion serves several purposes:

  • Grouping of Orthodontic Problems: Helps in identifying and categorizing various orthodontic issues.
  • Location of Problems: Aids in pinpointing specific areas that require treatment.
  • Diagnosis and Treatment Planning: Facilitates the development of effective treatment strategies.
  • Self-Communication: Provides a standardized language for orthodontists to discuss cases.
  • Documentation: Useful for recording and tracking orthodontic problems.
  • Epidemiological Studies: Assists in research and studies related to malocclusion prevalence.
  • Assessment of Treatment Effects: Evaluates the effectiveness of orthodontic appliances.

Normal Occlusion

Molar Relationship

According to Angle, normal occlusion is defined by the relationship of the mesiobuccal cusp of the maxillary first molar aligning with the buccal groove of the mandibular first molar.

Angle’s Classification of Malocclusion

Edward Angle, known as the father of modern orthodontics, first published his classification in 1899. The classification is based on the relationship of the mesiobuccal cusp of the maxillary first molar to the buccal groove of the mandibular first molar. It is divided into three classes:

Class I Malocclusion (Neutrocclusion)

  • Definition: Normal molar relationship is present, but there may be crowding, misalignment, rotations, cross-bites, and other irregularities.
  • Characteristics:
    • Molar relationship is normal.
    • Teeth may be crowded or rotated.
    • Other alignment irregularities may be present.

Class II Malocclusion (Distocclusion)

  • Definition: The lower molar is positioned distal to the upper molar.
  • Characteristics:
    • Often results in a retrognathic facial profile.
    • Increased overjet and overbite.
    • The mesiobuccal cusp of the maxillary first molar occludes anterior to the buccal groove of the mandibular first molar.

Subdivisions of Class II Malocclusion:

  1. Class II Division 1:
    • Class II molars with normally inclined or proclined maxillary central incisors.
  2. Class II Division 2:
    • Class II molars with retroclined maxillary central incisors.

Class III Malocclusion (Mesiocclusion)

  • Definition: The lower molar is positioned mesial to the upper molar.
  • Characteristics:
    • Often results in a prognathic facial profile.
    • Anterior crossbite and negative overjet (underbite).
    • The mesiobuccal cusp of the upper first molar falls posterior to the buccal groove of the lower first molar.

Advantages of Angle’s Classification

  • Comprehensive: It is the first comprehensive classification and is widely accepted in the field of orthodontics.
  • Simplicity: The classification is straightforward and easy to use.
  • Popularity: It is the most popular classification system among orthodontists.
  • Effective Communication: Facilitates clear communication regarding malocclusion.

Disadvantages of Angle’s Classification

  • Limited Plane Consideration: It primarily considers malocclusion in the anteroposterior plane, neglecting transverse and vertical dimensions.
  • Fixed Reference Point: The first molar is considered a fixed point, which may not be applicable in all cases.
  • Not Applicable for Deciduous Dentition: The classification does not effectively address malocclusion in children with primary teeth.
  • Lack of Distinction: It does not differentiate between skeletal and dental malocclusion.

Lip habits refer to various behaviors involving the lips that can affect oral health, facial aesthetics, and dental alignment. These habits can include lip biting, lip sucking, lip licking, and lip pursing. While some lip habits may be benign, others can lead to dental and orthodontic issues if they persist over time.

Common Types of Lip Habits

  1. Lip Biting:

    • Description: Involves the habitual biting of the lips, which can lead to chapped, sore, or damaged lips.
    • Causes: Often associated with stress, anxiety, or nervousness. It can also be a response to boredom or concentration.
  2. Lip Sucking:

    • Description: The act of sucking on the lips, similar to thumb sucking, which can lead to changes in dental alignment.
    • Causes: Often seen in young children as a self-soothing mechanism. It can also occur in response to anxiety or stress.
  3. Lip Licking:

    • Description: Habitual licking of the lips, which can lead to dryness and irritation.
    • Causes: Often a response to dry lips or a habit formed during stressful situations.
  4. Lip Pursing:

    • Description: The act of tightly pressing the lips together, which can lead to muscle tension and discomfort.
    • Causes: Often associated with anxiety or concentration.

Etiology of Lip Habits

  • Psychological Factors: Many lip habits are linked to emotional states such as stress, anxiety, or boredom. Children may develop these habits as coping mechanisms.
  • Oral Environment: Factors such as dry lips, dental issues, or malocclusion can contribute to the development of lip habits.
  • Developmental Factors: Young children may engage in lip habits as part of their exploration of their bodies and the world around them.

Clinical Features

  • Dental Effects:

    • Malocclusion: Prolonged lip habits can lead to changes in dental alignment, including open bites, overbites, or other malocclusions.
    • Tooth Wear: Lip biting can lead to wear on the incisal edges of the teeth.
    • Gum Recession: Chronic lip habits may contribute to gum recession or irritation.
  • Soft Tissue Changes:

    • Chapped or Cracked Lips: Frequent lip licking or biting can lead to dry, chapped, or cracked lips.
    • Calluses: In some cases, calluses may develop on the lips due to repeated biting or sucking.
  • Facial Aesthetics:

    • Changes in Lip Shape: Prolonged habits can lead to changes in the shape and appearance of the lips.
    • Facial Muscle Tension: Lip habits may contribute to muscle tension in the face, leading to discomfort or changes in facial expression.

Management

  1. Behavioral Modification:

    • Awareness Training: Educating the individual about their lip habits and encouraging them to become aware of when they occur.
    • Positive Reinforcement: Encouraging the individual to replace the habit with a more positive behavior, such as using lip balm for dry lips.
  2. Psychological Support:

    • Counseling: For individuals whose lip habits are linked to anxiety or stress, counseling or therapy may be beneficial.
    • Relaxation Techniques: Teaching relaxation techniques to help manage stress and reduce the urge to engage in lip habits.
  3. Oral Appliances:

    • In some cases, orthodontic appliances may be used to discourage lip habits, particularly if they are leading to malocclusion or other dental issues.
  4. Dental Care:

    • Regular Check-Ups: Regular dental visits can help monitor the effects of lip habits on oral health and provide guidance on management.
    • Treatment of Dental Issues: Addressing any underlying dental problems, such as cavities or misalignment, can help reduce the urge to engage in lip habits.

Types of Forces in Tooth Movement

  1. Light Forces:

    •  Forces that are gentle and continuous, typically in the range of 50-100 grams.
    • Effect: Light forces are ideal for orthodontic tooth movement as they promote biological responses without causing damage to the periodontal ligament or surrounding bone.
    • Examples: Springs, elastics, and aligners.
  2. Heavy Forces:

    •  Forces that exceed the threshold of light forces, often greater than 200 grams.
    • Effect: Heavy forces can lead to rapid tooth movement but may cause damage to the periodontal tissues, including root resorption and loss of anchorage.
    • Examples: Certain types of fixed appliances or excessive activation of springs.
  3. Continuous Forces:

    •  Forces that are applied consistently over time.
    • Effect: Continuous forces are essential for effective tooth movement, as they maintain the pressure-tension balance in the periodontal ligament.
    • Examples: Archwires in fixed appliances or continuous elastic bands.
  4. Intermittent Forces:

    •  Forces that are applied in a pulsed or periodic manner.
    • Effect: Intermittent forces can be effective in certain situations but may not provide the same level of predictability in tooth movement as continuous forces.
    • Examples: Temporary anchorage devices (TADs) that are activated periodically.
  5. Directional Forces:

    •  Forces applied in specific directions to achieve desired tooth movement.
    • Effect: The direction of the force is critical in determining the type of movement (e.g., tipping, bodily movement, rotation) that occurs.
    • Examples: Using springs or elastics to move teeth mesially, distally, buccally, or lingually.

BONES OF THE SKULL  

A) Bones of the cranial base: 

    A)  Fontal  (1) 
    B)  Ethmoid  (1)      
    C)  Sphenoid (1)  
    D)  Occipital  (1)
    
B) Bones of the cranial vault: 
 
   
   1. Parietal (2)          
       2. Temporal (2) 
       
C) Bones of the face:
  
      
 Maxilla (2) 
        Mandible (1) 
        Nasal bone (2) 
        Lacrimal bone (2) 
        Zygomatic bone (2) 
        Palatine bone(2) 
        Infra nasal concha (2)  

FUSION BETWEEN BONES 

1. Syndesmosis: Membranous or ligamentus eg. Sutural point. 
2. Synostosis: Bony union eg. symphysis menti. 
3. Synchondrosis: Cartilaginous eg. sphenoccipital, spheno-ethmoidal. 

GROWTH OF THE SKULL: 
       
  A)     Cranium: 1. Base   2. Vault   
          B)     Face:  1. Upper face 2.Lower face  

CRANIAL BASE: 

Cranial base grows at different cartilaginous suture. The cranial base may be divided into 3 areas.  

1. The posterior part which extends from the occiput to the salatercica. The most important growth site spheno-occipital synchondrosis is situated here. It is active throughout the growing period and does not close until early adult life.  

2. The middle portion extends from sella to foramen cecum and the sutural growth spheno-ethmoidal synchondrosis is situated here. The exact time of closing is not known but probably at the age of 7 years. 

3. The anterior part is from foramen cecum and grows by surface deposition of bone in the frontal region and simultaneous development of frontal sinus. 

CRANIAL VAULT:  

The cranial vault grows as the brain grows. It is accelerated at infant. The growth is complete by 90% by the end of 5th year. At birth the sutures are wide sufficiently and become approximated during the 1st 2 years of life. 

The development and extension of frontal sinus takes place particularly at the age of puberty and there is deposition of bone on the surfaces of cranial bone. 
 

Explore by Exams