NEET MDS Lessons
Orthodontics
Mesial Shift in Dental Development
Mesial shift refers to the movement of teeth in a mesial (toward the midline of the dental arch) direction. This phenomenon is particularly relevant in the context of mixed dentition, where both primary (deciduous) and permanent teeth are present. Mesial shifts can be categorized into two types: early mesial shift and late mesial shift. Understanding these shifts is important for orthodontic treatment planning and predicting changes in dental arch relationships.
Early Mesial Shift
- Timing: Occurs during the mixed dentition phase, typically around 6-7 years of age.
- Mechanism:
- The early mesial shift is primarily due to the closure of primate spaces. Primate spaces are natural gaps that exist between primary teeth, particularly between the maxillary lateral incisors and canines, and between the mandibular canines and first molars.
- As the permanent first molars erupt, they exert pressure on the primary teeth, leading to the closure of these spaces. This pressure causes the primary molars to drift mesially, resulting in a shift of the dental arch.
- Clinical Significance:
- The early mesial shift helps to maintain proper alignment and spacing for the eruption of permanent teeth. It is a natural part of dental development and can influence the overall occlusion.
Late Mesial Shift
- Timing: Occurs during the mixed dentition phase, typically around 10-11 years of age.
- Mechanism:
- The late mesial shift is associated with the closure of leeway spaces after the shedding of primary second molars. Leeway space refers to the difference in size between the primary molars and the permanent premolars that replace them.
- When the primary second molars are lost, the adjacent permanent molars (first molars) can drift mesially into the space left behind, resulting in a late mesial shift.
- Clinical Significance:
- The late mesial shift can help to align the dental arch and improve occlusion as the permanent teeth continue to erupt. However, if there is insufficient space or if the shift is excessive, it may lead to crowding or malocclusion.
Key Cephalometric Landmarks
-
Sella (S):
- The midpoint of the sella turcica, a bony structure located at the base of the skull. It serves as a central reference point in cephalometric analysis.
-
Nasion (N):
- The junction of the frontal and nasal bones, located at the bridge of the nose. It is often used as a reference point for the anterior cranial base.
-
A Point (A):
- The deepest point on the maxillary arch, located between the anterior nasal spine and the maxillary alveolar process. It is crucial for assessing maxillary position.
-
B Point (B):
- The deepest point on the mandibular arch, located between the anterior nasal spine and the mandibular alveolar process. It is important for evaluating mandibular position.
-
Pogonion (Pog):
- The most anterior point on the contour of the chin. It is used to assess the position of the mandible in relation to the maxilla.
-
Gnathion (Gn):
- The midpoint between Menton and Pogonion, representing the most inferior point of the mandible. It is used in various angular measurements.
-
Menton (Me):
- The lowest point on the symphysis of the mandible. It is used as a reference for vertical measurements.
-
Go (Gonion):
- The midpoint of the contour of the ramus and the body of the mandible. It is used to assess the angle of the mandible.
-
Frankfort Horizontal Plane (FH):
- A plane defined by the points of the external auditory meatus (EAM) and the lowest point of the orbit (Orbitale). It is used as a reference plane for various measurements.
-
Orbitale (Or):
- The lowest point on the inferior margin of the orbit (eye socket). It is used in conjunction with the EAM to define the Frankfort Horizontal Plane.
-
Ectocanthion (Ec):
- The outer canthus of the eye, used in facial measurements and assessments.
-
Endocanthion (En):
- The inner canthus of the eye, also used in facial measurements.
-
Alveolar Points:
- Points on the alveolar ridge of the maxilla and mandible, often used to assess the position of the teeth.
Importance of Cephalometric Landmarks
- Diagnosis: These landmarks help orthodontists diagnose skeletal and dental discrepancies, such as Class I, II, or III malocclusions.
- Treatment Planning: By understanding the relationships between these landmarks, orthodontists can develop effective treatment plans tailored to the individual patient's needs.
- Monitoring Progress: Cephalometric landmarks allow for the comparison of pre-treatment and post-treatment radiographs, helping to evaluate the effectiveness of orthodontic interventions.
- Research and Education: These landmarks are essential in orthodontic research and education, providing a standardized method for analyzing craniofacial morphology.
Thumb Sucking
According to Gellin, thumb sucking is defined as “the placement of the thumb or one or more fingers in varying depth into the mouth.” This behavior is common in infants and young children, serving as a self-soothing mechanism. However, prolonged thumb sucking can lead to various dental and orthodontic issues.
Diagnosis of Thumb Sucking
1. History
- Psychological Component: Assess any underlying psychological factors that may contribute to the habit, such as anxiety or stress.
- Frequency, Intensity, and Duration: Gather information on how often the child engages in thumb sucking, how intense the habit is, and how long it has been occurring.
- Feeding Patterns: Inquire about the child’s feeding habits, including breastfeeding or bottle-feeding, as these can influence thumb sucking behavior.
- Parental Care: Evaluate the parenting style and care provided to the child, as this can impact the development of habits.
- Other Habits: Assess for the presence of other oral habits, such as pacifier use or nail-biting, which may coexist with thumb sucking.
2. Extraoral Examination
- Digits:
- Appearance: The fingers may appear reddened, exceptionally clean, chapped, or exhibit short fingernails (often referred to as "dishpan thumb").
- Calluses: Fibrous, roughened calluses may be present on the superior aspect of the finger.
- Lips:
- Upper Lip: May appear short and hypotonic (reduced muscle tone).
- Lower Lip: Often hyperactive, showing increased movement or tension.
- Facial Form Analysis:
- Mandibular Retrusion: Check for any signs of the lower jaw being positioned further back than normal.
- Maxillary Protrusion: Assess for any forward positioning of the upper jaw.
- High Mandibular Plane Angle: Evaluate the angle of the mandible, which may be increased due to the habit.
3. Intraoral Examination
-
Clinical Features:
- Intraoral:
- Labial Flaring: Maxillary anterior teeth may show labial flaring due to the pressure from thumb sucking.
- Lingual Collapse: Mandibular anterior teeth may exhibit lingual collapse.
- Increased Overjet: The distance between the upper and lower incisors may be increased.
- Hypotonic Upper Lip: The upper lip may show reduced muscle tone.
- Hyperactive Lower Lip: The lower lip may be more active, compensating for the upper lip.
- Tongue Position: The tongue may be placed inferiorly, leading to a posterior crossbite due to maxillary arch contraction.
- High Palatal Vault: The shape of the palate may be altered, resulting in a high palatal vault.
- Intraoral:
-
Extraoral:
- Fungal Infection: There may be signs of fungal infection on the thumb due to prolonged moisture exposure.
- Thumb Nail Appearance: The thumb nail may exhibit a dishpan appearance, indicating frequent moisture exposure and potential damage.
Management of Thumb Sucking
1. Reminder Therapy
- Description: This involves using reminders to help the child become aware of their thumb sucking habit. Parents and caregivers can gently remind the child to stop when they notice them sucking their thumb. Positive reinforcement for not engaging in the habit can also be effective.
2. Mechanotherapy
- Description: This approach involves using mechanical
devices or appliances to discourage thumb sucking. Some options include:
- Thumb Guards: These are devices that fit over the thumb to prevent sucking.
- Palatal Crib: A fixed appliance that can be placed in the mouth to make thumb sucking uncomfortable or difficult.
- Behavioral Appliances: Appliances that create discomfort when the child attempts to suck their thumb, thereby discouraging the habit.
Lip habits refer to various behaviors involving the lips that can affect oral health, facial aesthetics, and dental alignment. These habits can include lip biting, lip sucking, lip licking, and lip pursing. While some lip habits may be benign, others can lead to dental and orthodontic issues if they persist over time.
Common Types of Lip Habits
-
Lip Biting:
- Description: Involves the habitual biting of the lips, which can lead to chapped, sore, or damaged lips.
- Causes: Often associated with stress, anxiety, or nervousness. It can also be a response to boredom or concentration.
-
Lip Sucking:
- Description: The act of sucking on the lips, similar to thumb sucking, which can lead to changes in dental alignment.
- Causes: Often seen in young children as a self-soothing mechanism. It can also occur in response to anxiety or stress.
-
Lip Licking:
- Description: Habitual licking of the lips, which can lead to dryness and irritation.
- Causes: Often a response to dry lips or a habit formed during stressful situations.
-
Lip Pursing:
- Description: The act of tightly pressing the lips together, which can lead to muscle tension and discomfort.
- Causes: Often associated with anxiety or concentration.
Etiology of Lip Habits
- Psychological Factors: Many lip habits are linked to emotional states such as stress, anxiety, or boredom. Children may develop these habits as coping mechanisms.
- Oral Environment: Factors such as dry lips, dental issues, or malocclusion can contribute to the development of lip habits.
- Developmental Factors: Young children may engage in lip habits as part of their exploration of their bodies and the world around them.
Clinical Features
-
Dental Effects:
- Malocclusion: Prolonged lip habits can lead to changes in dental alignment, including open bites, overbites, or other malocclusions.
- Tooth Wear: Lip biting can lead to wear on the incisal edges of the teeth.
- Gum Recession: Chronic lip habits may contribute to gum recession or irritation.
-
Soft Tissue Changes:
- Chapped or Cracked Lips: Frequent lip licking or biting can lead to dry, chapped, or cracked lips.
- Calluses: In some cases, calluses may develop on the lips due to repeated biting or sucking.
-
Facial Aesthetics:
- Changes in Lip Shape: Prolonged habits can lead to changes in the shape and appearance of the lips.
- Facial Muscle Tension: Lip habits may contribute to muscle tension in the face, leading to discomfort or changes in facial expression.
Management
-
Behavioral Modification:
- Awareness Training: Educating the individual about their lip habits and encouraging them to become aware of when they occur.
- Positive Reinforcement: Encouraging the individual to replace the habit with a more positive behavior, such as using lip balm for dry lips.
-
Psychological Support:
- Counseling: For individuals whose lip habits are linked to anxiety or stress, counseling or therapy may be beneficial.
- Relaxation Techniques: Teaching relaxation techniques to help manage stress and reduce the urge to engage in lip habits.
-
Oral Appliances:
- In some cases, orthodontic appliances may be used to discourage lip habits, particularly if they are leading to malocclusion or other dental issues.
-
Dental Care:
- Regular Check-Ups: Regular dental visits can help monitor the effects of lip habits on oral health and provide guidance on management.
- Treatment of Dental Issues: Addressing any underlying dental problems, such as cavities or misalignment, can help reduce the urge to engage in lip habits.
Anterior bite plate is an orthodontic appliance used primarily to manage various dental issues, particularly those related to occlusion and alignment of the anterior teeth. It is a removable appliance that is placed in the mouth to help correct bite discrepancies, improve dental function, and protect the teeth from wear.
Indications for Use
-
Anterior Crossbite:
- An anterior bite plate can help correct an anterior crossbite by repositioning the maxillary incisors in relation to the mandibular incisors.
-
Open Bite:
- It can be used to help close an anterior open bite by providing a surface for the anterior teeth to occlude against, encouraging proper alignment.
-
Bruxism:
- The appliance can protect the anterior teeth from wear caused by grinding or clenching, acting as a barrier between the upper and lower teeth.
-
Space Maintenance:
- In cases where anterior teeth have been lost or extracted, an anterior bite plate can help maintain space for future dental work or the eruption of permanent teeth.
-
Facilitation of Orthodontic Treatment:
- It can be used as part of a comprehensive orthodontic treatment plan to help achieve desired tooth movements and improve overall occlusion.
Design and Features
- Material: Anterior bite plates are typically made from acrylic or thermoplastic materials, which are durable and can be easily adjusted.
- Shape: The appliance is designed to cover the anterior teeth, providing a flat occlusal surface for the upper and lower teeth to meet.
- Retention: The bite plate is custom-fitted to the patient’s dental arch to ensure comfort and stability during use.
Mechanism of Action
- Repositioning Teeth: The anterior bite plate can help reposition the anterior teeth by providing a surface that encourages proper occlusion and alignment.
- Distributing Forces: It helps distribute occlusal forces evenly across the anterior teeth, reducing the risk of localized wear or damage.
- Encouraging Proper Function: By providing a stable occlusal surface, the bite plate encourages proper chewing and speaking functions.
Management and Care
- Patient Compliance: For the anterior bite plate to be effective, patients must wear it as prescribed by their orthodontist. This may involve wearing it during the day, at night, or both, depending on the specific treatment goals.
- Hygiene: Patients should maintain good oral hygiene and clean the bite plate regularly to prevent plaque buildup and maintain oral health.
- Regular Check-Ups: Follow-up appointments with the orthodontist are essential to monitor progress and make any necessary adjustments to the appliance.
Anchorage in orthodontics refers to the resistance that the anchorage area offers to unwanted tooth movements during orthodontic treatment. Proper understanding and application of anchorage principles are crucial for achieving desired tooth movements while minimizing undesirable effects on adjacent teeth.
Classification of Anchorage
1. According to Manner of Force Application
-
Simple Anchorage:
- Achieved by engaging a greater number of teeth than those being moved within the same dental arch.
- The combined root surface area of the anchorage unit must be at least double that of the teeth to be moved.
-
Stationary Anchorage:
- Defined as dental anchorage where the application of force tends to displace the anchorage unit bodily in the direction of the force.
- Provides greater resistance compared to anchorage that only resists tipping forces.
-
Reciprocal Anchorage:
- Refers to the resistance offered by two malposed units when equal and opposite forces are applied, moving each unit towards a more normal occlusion.
- Examples:
- Closure of a midline diastema by moving the two central incisors towards each other.
- Use of crossbite elastics and dental arch expansions.
2. According to Jaws Involved
- Intra-maxillary Anchorage:
- All units offering resistance are situated within the same jaw.
- Intermaxillary Anchorage:
- Resistance units in one jaw are used to effect tooth movement in the opposing jaw.
- Also known as Baker's anchorage.
- Examples:
- Class II elastic traction.
- Class III elastic traction.
3. According to Site
-
Intraoral Anchorage:
- Both the teeth to be moved and the anchorage areas are located within the oral cavity.
- Anatomic units include teeth, palate, and lingual alveolar bone of the mandible.
-
Extraoral Anchorage:
- Resistance units are situated outside the oral cavity.
- Anatomic units include the occiput, back of the neck, cranium, and face.
- Examples:
- Headgear.
- Facemask.
-
Muscular Anchorage:
- Utilizes forces generated by muscles to aid in tooth movement.
- Example: Lip bumper to distalize molars.
4. According to Number of Anchorage Units
-
Single or Primary Anchorage:
- A single tooth with greater alveolar support is used to move another tooth with lesser support.
-
Compound Anchorage:
- Involves more than one tooth providing resistance to move teeth with lesser support.
-
Multiple or Reinforced Anchorage:
- Utilizes more than one type of resistance unit.
- Examples:
- Extraoral forces to augment anchorage.
- Upper anterior inclined plane.
- Transpalatal arch.
Relapse
Definition: Relapse refers to the tendency of teeth to return to their original positions after orthodontic treatment. This can occur due to various factors, including the natural elasticity of the periodontal ligament, muscle forces, and the influence of oral habits.
Causes of Relapse
- Elasticity of the Periodontal Ligament: After orthodontic treatment, the periodontal ligament may still have a tendency to revert to its original state, leading to tooth movement.
- Muscle Forces: The forces exerted by the lips, cheeks, and tongue can influence tooth positions, especially if these forces are not balanced.
- Growth and Development: In growing patients, changes in jaw size and shape can lead to shifts in tooth positions.
- Non-Compliance with Retainers: Failure to wear retainers as prescribed can significantly increase the risk of relapse.
Prevention of Relapse
- Consistent Retainer Use: Adhering to the retainer regimen as prescribed by the orthodontist is crucial for maintaining tooth positions.
- Regular Follow-Up Visits: Periodic check-ups with the orthodontist can help monitor tooth positions and address any concerns early.
- Patient Education: Educating patients about the importance of retention and the potential for relapse can improve compliance with retainer wear.