NEET MDS Lessons
Oral and Maxillofacial Surgery
Absorbable |
Natural |
Catgut Tansor fascia lata Collagen tape |
Synthetic |
Polyglycolic acid (Dexon) Polyglactin (Vicryl) Polydioxanone (PDS) |
|
Non-absorbable |
Natural |
Linen Cotton Silk |
Synthetic |
Nylon Terylene (Dacron) Polypropylene (Prolene) |
Cryosurgery
Cryosurgery is a medical technique that utilizes extreme rapid cooling to freeze and destroy tissues. This method is particularly effective for treating various conditions, including malignancies, vascular tumors, and aggressive tumors such as ameloblastoma. The process involves applying very low temperatures to induce localized tissue destruction while minimizing damage to surrounding healthy tissues.
Mechanism of Action
The effects of rapid freezing on tissues include:
-
Reduction of Intracellular Water:
- Rapid cooling causes water within the cells to freeze, leading to a decrease in intracellular water content.
-
Cellular and Cell Membrane Shrinkage:
- The freezing process results in the shrinkage of cells and their membranes, contributing to cellular damage.
-
Increased Concentrations of Intracellular Solutes:
- As water is removed from the cells, the concentration of solutes (such as proteins and electrolytes) increases, which can disrupt cellular function.
-
Formation of Ice Crystals:
- Both intracellular and extracellular ice crystals form during the freezing process. The formation of these crystals can puncture cell membranes and disrupt cellular integrity, leading to cell death.
Cryosurgery Apparatus
The equipment used in cryosurgery typically includes:
-
Storage Bottles for Pressurized Liquid Gases:
- Liquid Nitrogen: Provides extremely low temperatures of approximately -196°C, making it highly effective for cryosurgery.
- Liquid Carbon Dioxide or Nitrous Oxide: These gases provide temperatures ranging from -20°C to -90°C, which can also be used for various applications.
-
Pressure and Temperature Gauge:
- This gauge is essential for monitoring the pressure and temperature of the cryogenic gases to ensure safe and effective application.
-
Probe with Tubing:
- A specialized probe is used to direct the pressurized gas to the targeted tissues, allowing for precise application of the freezing effect.
Treatment Parameters
- Time and Temperature: The specific time and temperature used during cryosurgery depend on the depth and extent of the tumor being treated. The clinician must carefully assess these factors to achieve optimal results while minimizing damage to surrounding healthy tissues.
Applications
Cryosurgery is applied in the treatment of various conditions, including:
- Malignancies: Used to destroy cancerous tissues in various organs.
- Vascular Tumors: Effective in treating tumors that have a significant blood supply.
- Aggressive Tumors: Such as ameloblastoma, where rapid and effective tissue destruction is necessary.
Surgical Gut (Catgut)
Surgical gut, commonly known as catgut, is a type of absorbable suture material derived from the intestines of animals, primarily sheep and cattle. It has been widely used in surgical procedures due to its unique properties, although it has certain limitations. Below is a detailed overview of surgical gut, including its composition, properties, mechanisms of absorption, and clinical applications.
Composition and Preparation
-
Source: Surgical gut is prepared from:
- Submucosa of Sheep Small Intestine: This layer is rich in collagen, which is essential for the strength and absorbability of the suture.
- Serosal Layer of Cattle Small Intestine: This layer also provides collagen and is used in the production of surgical gut.
-
Collagen Content: The primary component of surgical gut is collagen, which is treated with formaldehyde to enhance its properties. This treatment helps stabilize the collagen structure and prolongs the suture's strength.
-
Suture Characteristics:
- Multifilament Structure: Surgical gut is a capillary multifilament suture, meaning it consists of multiple strands that can absorb fluids, which can be beneficial in certain surgical contexts.
- Smooth Surface: The sutures are machine-ground and polished to yield a relatively smooth surface, resembling that of monofilament sutures.
Sterilization
-
Sterilization Methods:
- Ionizing Radiation: Surgical gut is typically sterilized using ionizing radiation, which effectively kills pathogens without denaturing the protein structure of the collagen.
- Ethylene Oxide: This method can also be used for sterilization, and it prolongs the absorption time of the suture, making it suitable for specific applications.
-
Limitations of Autoclaving: Autoclaving is not suitable for surgical gut because it denatures the protein, leading to a significant loss of tensile strength.
Mechanism of Absorption
The absorption of surgical gut after implantation occurs through a twofold mechanism primarily involving macrophages:
-
Molecular Bond Cleavage:
- Acid hydrolytic and collagenolytic activities cleave the molecular bonds in the collagen structure of the suture.
-
Digestion and Absorption:
- Proteolytic enzymes further digest the collagen, leading to the gradual absorption of the suture material.
- Foreign Body Reaction: Due to its collagenous composition, surgical gut stimulates a significant foreign body reaction in the implanted tissue, which can lead to inflammation.
Rate of Absorption and Loss of Tensile Strength
-
Variability: The rate of absorption and loss of tensile strength varies depending on the implantation site and the surrounding tissue environment.
-
Premature Absorption: Factors that can lead to premature absorption include:
- Exposure to gastric secretions.
- Presence of infection.
- Highly vascularized tissues.
- Conditions in protein-depleted patients.
-
Strength Loss Timeline:
- Medium chromic gut loses about 33% of its original strength after 7 days of implantation and about 67% after 28 days.
Types of Surgical Gut
-
Plain Gut:
- Characteristics: Produces a severe tissue reaction and loses tensile strength rapidly, making it less useful in surgical applications.
- Applications: Limited due to its inflammatory response and quick absorption.
-
Chromic Gut:
- Treatment: Treated with chromium salts to increase tensile strength and resistance to digestion while decreasing tissue reactivity.
- Advantages: Provides a more controlled absorption rate and is more suitable for surgical use compared to plain gut.
Handling Characteristics
- Good Handling: Surgical gut generally exhibits good handling characteristics, allowing for easy manipulation during surgical procedures.
- Weakness When Wet: It swells and weakens when wet, which can affect knot security and overall performance during surgery.
Disadvantages
- Intense Inflammatory Reaction: Surgical gut can provoke a significant inflammatory response, which may complicate healing.
- Variability in Strength Loss: The unpredictable rate of loss of tensile strength can be a concern in surgical applications.
- Capillarity: The multifilament structure can absorb fluids, which may lead to increased tissue reaction and complications.
- Sensitivity Reactions: Some patients, particularly cats, may experience sensitivity reactions to surgical gut.
Clinical Applications
- Use in Surgery: Surgical gut is used in various surgical procedures, particularly in soft tissue closures where absorbable sutures are preferred.
- Adhesion Formation: The use of surgical gut is generally unwarranted in situations where adhesion formation is desired due to its inflammatory properties.
Fiberoptic Endotracheal Intubation
Fiberoptic endotracheal intubation is a valuable technique in airway management, particularly in situations where traditional intubation methods may be challenging or impossible. This technique utilizes a flexible fiberoptic scope to visualize the airway and facilitate the placement of an endotracheal tube. Below is an overview of the indications, techniques, and management strategies for both basic and difficult airway situations.
Indications for Fiberoptic Intubation
-
Cervical Spine Stability:
- Useful in patients with unstable cervical spine injuries where neck manipulation is contraindicated.
-
Poor Visualization of Vocal Cords:
- When a straight line view from the mouth to the larynx cannot be established, fiberoptic intubation allows for visualization of the vocal cords through the nasal or oral route.
-
Difficult Airway:
- Can be performed as an initial management strategy for patients known to have a difficult airway or as a backup technique if direct laryngoscopy fails.
-
Awake Intubation:
- Fiberoptic intubation can be performed while the patient is awake, allowing for better tolerance and cooperation, especially in cases of anticipated difficult intubation.
Basic Airway Management
Basic airway management involves the following components:
-
Airway Anatomy and Evaluation: Understanding the anatomy of the airway and assessing the patient's airway for potential difficulties.
-
Mask Ventilation: Techniques for providing positive pressure ventilation using a bag-mask device.
-
Oropharyngeal and Nasal Airways: Use of adjuncts to maintain airway patency.
-
Direct Laryngoscopy and Intubation: Standard technique for intubating the trachea using a laryngoscope.
-
Laryngeal Mask Airway (LMA) Placement: An alternative airway device that can be used when intubation is not possible.
-
Indications, Contraindications, and Management of Complications: Understanding when to use each technique and how to manage potential complications.
-
Objective Structured Clinical Evaluation (OSCE): A method for assessing the skills of trainees in airway management.
-
Evaluation of Session by Trainees: Feedback and assessment of the training session to improve skills and knowledge.
Difficult Airway Management
Difficult airway management requires a systematic approach, often guided by an algorithm. Key components include:
-
Difficult Airway Algorithm: A step-by-step approach to managing difficult airways, including decision points for intervention.
-
Airway Anesthesia: Techniques for anesthetizing the airway to facilitate intubation, especially in awake intubation scenarios.
-
Fiberoptic Intubation: As previously discussed, this technique is crucial for visualizing and intubating the trachea in difficult cases.
-
Intubation with Fastrach and CTrach LMA: Specialized LMAs designed for facilitating intubation.
-
Intubation with Shikhani Optical Stylet and Light Wand: Tools that assist in visualizing the airway and guiding the endotracheal tube.
-
Cricothyrotomy and Jet Ventilation: Emergency procedures for establishing an airway when intubation is not possible.
-
Combitube: A dual-lumen airway device that can be used in emergencies.
-
Intubation Over Bougie: A technique that uses a bougie to facilitate intubation when direct visualization is difficult.
-
Retrograde Wire Intubation: A method that involves passing a wire through the cricothyroid membrane to guide the endotracheal tube.
-
Indications, Contraindications, and Management of Complications: Understanding when to use each technique and how to manage complications effectively.
-
Objective Structured Clinical Evaluation (OSCE): Assessment of trainees' skills in managing difficult airways.
-
Evaluation of Session by Trainees: Feedback and assessment to enhance learning and skill development.
Augmentation of the Inferior Border of the Mandible
Mandibular augmentation refers to surgical procedures aimed at increasing the height or contour of the mandible, particularly the inferior border. This type of augmentation is often performed to improve the support for dentures, enhance facial aesthetics, or correct deformities. Below is an overview of the advantages and disadvantages of augmenting the inferior border of the mandible.
Advantages of Inferior Border Augmentation
-
Preservation of the Vestibule:
- The procedure does not obliterate the vestibule, allowing for the immediate placement of an interim denture. This is particularly beneficial for patients who require prosthetic support soon after surgery.
-
No Change in Vertical Dimension:
- Augmentation of the inferior border does not alter the vertical dimension of the occlusion, which is crucial for maintaining proper bite relationships and avoiding complications associated with changes in jaw alignment.
-
Facilitation of Secondary Vestibuloplasty:
- The procedure makes subsequent vestibuloplasty easier. By maintaining the vestibular space, it allows for better access and manipulation during any future surgical interventions aimed at deepening the vestibule.
-
Protection of the Graft:
- The graft used for augmentation is not subjected to direct masticatory forces, reducing the risk of graft failure and promoting better healing. This is particularly important in ensuring the longevity and stability of the augmentation.
Disadvantages of Inferior Border Augmentation
-
Extraoral Scar:
- The procedure typically involves an incision that can result in an extraoral scar. This may be a cosmetic concern for some patients, especially if the scar is prominent or does not heal well.
-
Potential Alteration of Facial Appearance:
- If the submental and submandibular tissues are not initially loose, there is a risk of altering the facial appearance. Tight or inelastic tissues may lead to distortion or asymmetry postoperatively.
-
Limited Change in Superior Surface Shape:
- The augmentation primarily affects the inferior border of the mandible and may not significantly change the shape of the superior surface of the mandible. This limitation can affect the overall contour and aesthetics of the jawline.
-
Surgical Risks:
- As with any surgical procedure, there are inherent risks, including infection, bleeding, and complications related to anesthesia. Additionally, there may be risks associated with the grafting material used.
Classes of Hemorrhagic Shock (ATLS Classification)
Hemorrhagic shock is a critical condition resulting from significant blood loss, leading to inadequate tissue perfusion and oxygenation. The Advanced Trauma Life Support (ATLS) course classifies hemorrhagic shock into four classes based on various physiological parameters. Understanding these classes helps guide the management and treatment of patients experiencing hemorrhagic shock.
Class Descriptions
-
Class I Hemorrhagic Shock:
- Blood Loss: 0-15% (up to 750 mL)
- CNS Status: Slightly anxious; the patient may be alert and oriented.
- Pulse: Heart rate <100 beats/min.
- Blood Pressure: Normal.
- Pulse Pressure: Normal.
- Respiratory Rate: 14-20 breaths/min.
- Urine Output: >30 mL/hr, indicating adequate renal perfusion.
- Fluid Resuscitation: Crystalloid fluids are typically sufficient.
-
Class II Hemorrhagic Shock:
- Blood Loss: 15-30% (750-1500 mL)
- CNS Status: Mildly anxious; the patient may show signs of distress.
- Pulse: Heart rate >100 beats/min.
- Blood Pressure: Still normal, but compensatory mechanisms are activated.
- Pulse Pressure: Decreased due to increased heart rate and peripheral vasoconstriction.
- Respiratory Rate: 20-30 breaths/min.
- Urine Output: 20-30 mL/hr, indicating reduced renal perfusion.
- Fluid Resuscitation: Crystalloid fluids are still appropriate.
-
Class III Hemorrhagic Shock:
- Blood Loss: 30-40% (1500-2000 mL)
- CNS Status: Anxious or confused; the patient may have altered mental status.
- Pulse: Heart rate >120 beats/min.
- Blood Pressure: Decreased; signs of hypotension may be present.
- Pulse Pressure: Decreased.
- Respiratory Rate: 30-40 breaths/min.
- Urine Output: 5-15 mL/hr, indicating significant renal impairment.
- Fluid Resuscitation: Crystalloid fluids plus blood products may be necessary.
-
Class IV Hemorrhagic Shock:
- Blood Loss: >40% (>2000 mL)
- CNS Status: Confused or lethargic; the patient may be unresponsive.
- Pulse: Heart rate >140 beats/min.
- Blood Pressure: Decreased; severe hypotension is likely.
- Pulse Pressure: Decreased.
- Respiratory Rate: >35 breaths/min.
- Urine Output: Negligible, indicating severe renal failure.
- Fluid Resuscitation: Immediate crystalloid and blood products are critical.
Sutures
Sutures are an essential component of oral surgery, used to close wounds, secure grafts, and stabilize tissues after surgical procedures. The choice of suture material and sterilization methods is critical for ensuring effective healing and minimizing complications. Below is a detailed overview of suture materials, specifically focusing on catgut and its sterilization methods.
Types of Suture Materials
-
Absorbable Sutures: These sutures are designed to be broken down and absorbed by the body over time. They are commonly used in oral surgery for soft tissue closure where long-term support is not necessary.
- Catgut: A natural absorbable suture made from the intestinal mucosa of sheep or cattle. It is widely used in oral surgery due to its good handling properties and ability to promote healing.
-
Non-Absorbable Sutures: These sutures remain in the body until they are removed or until they eventually break down. They are used in situations where long-term support is needed.
Catgut Sutures
Sterilization Methods: Catgut sutures must be properly sterilized to prevent infection and ensure safety during surgical procedures. Two common sterilization methods for catgut are:
-
Gamma Radiation Sterilization:
- Process: Catgut sutures are sterilized using gamma radiation, typically at a dose of 2.5 mega-rads. This method effectively kills bacteria and other pathogens without compromising the integrity of the suture material.
- Preservation: After sterilization, catgut sutures are preserved in a solution of 2.5 percent formaldehyde and denatured absolute alcohol. This solution helps maintain the sterility of the sutures while preventing degradation.
- Packaging: The sutures are stored in spools or foils to protect them from contamination until they are ready for use.
-
Chromic Acid Method:
- Process: In this method, catgut sutures are immersed in a solution containing 20 percent chromic acid and five parts of 8.5 percent glycerin. This process not only sterilizes the sutures but also enhances their durability.
- Benefits: The chromic acid treatment helps to secure a longer stay in the pack, meaning that the sutures can maintain their strength and integrity for a more extended period before being used. This is particularly beneficial in surgical settings where sutures may need to be stored for some time.
Characteristics of Catgut Sutures
- Absorbability: Catgut sutures are absorbable, typically losing their tensile strength within 7 to 14 days, depending on the type (plain or chromic).
- Tensile Strength: They provide good initial tensile strength, making them suitable for various surgical applications.
- Biocompatibility: Being a natural product, catgut is generally well-tolerated by the body, although some patients may have sensitivities or allergic reactions.
- Handling: Catgut sutures are easy to handle and tie, making them a popular choice among surgeons.
Applications in Oral Surgery
- Soft Tissue Closure: Catgut sutures are commonly used for closing incisions in soft tissues of the oral cavity, such as after tooth extractions, periodontal surgeries, and mucosal repairs.
- Graft Stabilization: They can also be used to secure grafts in procedures like guided bone regeneration or soft tissue grafting.