NEET MDS Lessons
Oral and Maxillofacial Surgery
Osteoradionecrosis
Osteoradionecrosis (ORN) is a condition that can occur following radiation therapy, particularly in the head and neck region, leading to the death of bone tissue due to compromised blood supply. The management of ORN is complex and requires a multidisciplinary approach. Below is a comprehensive overview of the treatment strategies for osteoradionecrosis.
1. Debridement
- Purpose: Surgical debridement involves the removal of necrotic and infected tissue to promote healing and prevent the spread of infection.
- Procedure: This may include the excision of necrotic bone and soft tissue, allowing for better access to healthy tissue.
2. Control of Infection
- Antibiotic Therapy: Broad-spectrum antibiotics are administered to control any acute infections present. However, it is important to note that antibiotics may not penetrate necrotic bone effectively due to poor circulation.
- Monitoring: Regular assessment of infection status is crucial to adjust antibiotic therapy as needed.
3. Hospitalization
- Indication: Patients with severe ORN or those requiring surgical intervention may need hospitalization for close monitoring and management.
4. Supportive Treatment
- Hydration: Fluid therapy is essential to maintain hydration and support overall health.
- Nutritional Support: A high-protein and vitamin-rich diet is recommended to promote healing and recovery.
5. Pain Management
- Analgesics: Both narcotic and non-narcotic analgesics are used to manage pain effectively.
- Regional Anesthesia: Techniques such as bupivacaine (Marcaine) injections, alcohol nerve blocks, nerve avulsion, and rhizotomy may be employed for more effective pain control.
6. Good Oral Hygiene
- Oral Rinses: Regular use of oral rinses, such as 1% sodium fluoride gel, 1% chlorhexidine gluconate, and plain water, helps prevent radiation-induced caries and manage xerostomia and mucositis. These rinses can enhance local immune responses and antimicrobial activity.
7. Frequent Irrigations of Wounds
- Purpose: Regular irrigation of the affected areas helps to keep the wound clean and free from debris, promoting healing.
8. Management of Exposed Dead Bone
- Removal of Loose Bone: Small pieces of necrotic bone that become loose can be removed easily to reduce the risk of infection and promote healing.
9. Sequestration Techniques
- Drilling: As recommended by Hahn and Corgill (1967), drilling multiple holes into vital bone can encourage the sequestration of necrotic bone, facilitating its removal.
10. Sequestrectomy
- Indication: Sequestrectomy involves the surgical removal of necrotic bone (sequestrum) and is preferably performed intraorally to minimize complications associated with skin and vascular damage from radiation.
11. Management of Pathological Fractures
- Fracture Treatment: Although pathological fractures are
not common, they may occur from minor injuries and do not heal readily. The
best treatment involves:
- Excision of necrotic ends of both bone fragments.
- Replacement with a large graft.
- Major soft tissue flap revascularization may be necessary to support reconstruction.
12. Bone Resection
- Indication: Bone resection is performed if there is persistent pain, infection, or pathological fracture. It is preferably done intraorally to avoid the risk of orocutaneous fistula in radiation-compromised skin.
13. Hyperbaric Oxygen (HBO) Therapy
- Adjunctive Treatment: HBO therapy can be a useful adjunct in the management of ORN. While it may not be sufficient alone to support bone graft healing, it can aid in soft tissue graft healing and minimize compartmentalization.
Trigeminal Neuralgia
Trigeminal neuralgia (TN) is a type of orofacial neuralgia characterized by severe, paroxysmal pain that follows the anatomical distribution of the trigeminal nerve (cranial nerve V). It is often described as one of the most painful conditions known, and understanding its features, triggers, and patterns is essential for effective management.
Features of Trigeminal Neuralgia
-
Anatomical Distribution:
- Trigeminal neuralgia follows the distribution of the trigeminal
nerve, which has three main branches:
- V1 (Ophthalmic): Supplies sensation to the forehead, upper eyelid, and parts of the nose.
- V2 (Maxillary): Supplies sensation to the cheeks, upper lip, and upper teeth.
- V3 (Mandibular): Supplies sensation to the lower lip, chin, and lower teeth.
- Pain can occur in one or more of these dermatomes, but it is typically unilateral.
- Trigeminal neuralgia follows the distribution of the trigeminal
nerve, which has three main branches:
-
Trigger Zones:
- Patients with trigeminal neuralgia often have specific trigger zones on the face. These are areas where light touch, brushing, or even wind can provoke an episode of pain.
- Stimulation of these trigger zones can initiate a paroxysm of pain, leading to sudden and intense discomfort.
-
Pain Characteristics:
- The pain associated with trigeminal neuralgia is described as:
- Paroxysmal: Occurs in sudden bursts or attacks.
- Excruciating: The pain is often severe and debilitating.
- Sharp, shooting, or lancinating: Patients may describe the pain as electric shock-like.
- Unilateral: Pain typically affects one side of the face.
- Intermittent: Attacks can vary in frequency and duration.
- The pain associated with trigeminal neuralgia is described as:
-
Latency and Refractory Period:
- Latency: This refers to the short time interval between the stimulation of the trigger area and the onset of pain. It can vary among patients.
- Refractory Period: After an attack, there may be a refractory period during which further stimulation does not elicit pain. This period can vary in length and is an important aspect of the pain cycle.
-
Pain Cycles:
- Paroxysms of pain often occur in cycles, with each cycle lasting for weeks or months. Over time, these cycles may become more frequent, and the intensity of pain can increase with each attack.
- Patients may experience a progressive worsening of symptoms, leading to more frequent and severe episodes.
-
Psychosocial Impact:
- The unpredictable nature of trigeminal neuralgia can significantly impact a patient's quality of life, leading to anxiety, depression, and social withdrawal due to fear of triggering an attack.
Management of Trigeminal Neuralgia
-
Medications:
- Anticonvulsants: Medications such as carbamazepine and oxcarbazepine are commonly used as first-line treatments to help control pain.
- Other Medications: Gabapentin, pregabalin, and baclofen may also be effective in managing symptoms.
-
Surgical Options:
- For patients who do not respond to medication or experience
intolerable side effects, surgical options may be considered. These can
include:
- Microvascular Decompression: A surgical procedure that relieves pressure on the trigeminal nerve.
- Rhizotomy: A procedure that selectively destroys nerve fibers to reduce pain.
- For patients who do not respond to medication or experience
intolerable side effects, surgical options may be considered. These can
include:
-
Alternative Therapies:
- Some patients may benefit from complementary therapies such as acupuncture, physical therapy, or biofeedback.
Neurogenic Shock
Neurogenic shock is a type of distributive shock that occurs due to the loss of vasomotor tone, leading to widespread vasodilation and a significant decrease in systemic vascular resistance. This condition can occur without any loss of blood volume, resulting in inadequate filling of the circulatory system despite normal blood volume. Below is a detailed overview of neurogenic shock, its causes, symptoms, and management.
Mechanism of Neurogenic Shock
- Loss of Vasomotor Tone: Neurogenic shock is primarily caused by the disruption of sympathetic nervous system activity, which leads to a loss of vasomotor tone. This results in massive dilation of blood vessels, particularly veins, causing a significant increase in vascular capacity.
- Decreased Systemic Vascular Resistance: The dilated blood vessels cannot effectively maintain blood pressure, leading to inadequate perfusion of vital organs, including the brain.
Causes
- Spinal Cord Injury: Damage to the spinal cord, particularly at the cervical or upper thoracic levels, can disrupt sympathetic outflow and lead to neurogenic shock.
- Severe Head Injury: Traumatic brain injury can also affect autonomic regulation and result in neurogenic shock.
- Vasovagal Syncope: A common form of neurogenic shock, often triggered by emotional stress, pain, or prolonged standing, leading to a sudden drop in heart rate and blood pressure.
Symptoms
Early Signs:
- Pale or Ashen Gray Skin: Due to peripheral vasodilation and reduced blood flow to the skin.
- Heavy Perspiration: Increased sweating as a response to stress or pain.
- Nausea: Gastrointestinal distress may occur.
- Tachycardia: Increased heart rate as the body attempts to compensate for low blood pressure.
- Feeling of Warmth: Particularly in the neck or face due to vasodilation.
Late Symptoms:
- Coldness in Hands and Feet: Peripheral vasoconstriction may occur as the body prioritizes blood flow to vital organs.
- Hypotension: Significantly low blood pressure due to vasodilation.
- Bradycardia: Decreased heart rate, particularly in cases of vasovagal syncope.
- Dizziness and Visual Disturbance: Due to decreased cerebral perfusion.
- Papillary Dilation: As a response to low light levels in the eyes.
- Hyperpnea: Increased respiratory rate as the body attempts to compensate for low oxygen delivery.
- Loss of Consciousness: Resulting from critically low cerebral blood flow.
Duration of Syncope
- Brief Duration: The duration of syncope in neurogenic shock is typically very brief. Patients often regain consciousness almost immediately upon being placed in a supine position.
- Supine Positioning: This position is crucial as it helps increase venous return to the heart and improves cerebral perfusion, aiding in recovery.
Management
-
Positioning: The first and most important step in managing neurogenic shock is to place the patient in a supine position. This helps facilitate blood flow to the brain.
-
Fluid Resuscitation: While neurogenic shock does not typically involve blood loss, intravenous fluids may be administered to help restore vascular volume and improve blood pressure.
-
Vasopressors: In cases where hypotension persists despite fluid resuscitation, vasopressor medications may be used to constrict blood vessels and increase blood pressure.
-
Monitoring: Continuous monitoring of vital signs, including blood pressure, heart rate, and oxygen saturation, is essential to assess the patient's response to treatment.
-
Addressing Underlying Causes: If neurogenic shock is due to a specific cause, such as spinal cord injury or vasovagal syncope, appropriate interventions should be initiated to address the underlying issue.
Management of Skin Loss in the Face
Skin loss in the face can be a challenging condition to manage, particularly when it involves critical areas such as the lips and eyelids. The initial assessment of skin loss may be misleading, as retraction of skin due to underlying muscle tension can create the appearance of tissue loss. However, when significant skin loss is present, it is essential to address the issue promptly and effectively to prevent complications and promote optimal healing.
Principles of Management
-
Assessment Under Anesthesia: A thorough examination under anesthesia is necessary to accurately assess the extent of skin loss and plan the most suitable repair strategy.
-
No Healing by Granulation: Unlike other areas of the body, wounds on the face should not be allowed to heal by granulation. This approach can lead to unacceptable scarring, contracture, and functional impairment.
-
Repair Options: The following options are available for repairing skin loss in the face:
- Skin Grafting: This involves transferring a piece of skin from a donor site to the affected area. Skin grafting can be used for small to moderate-sized defects.
- Local Flaps: Local flaps involve transferring tissue from an adjacent area to the defect site. This approach is useful for larger defects and can provide better color and texture match.
- Apposition of Skin to Mucosa: In some cases, it may be possible to appose skin to mucosa, particularly in areas where the skin and mucosa are closely approximated.
Types of skin grafts:
Split-thickness skin graft (STSG):The most common type, where only the epidermis
and a thin layer of dermis are harvested.
Full-thickness skin graft (FTSG):Includes the entire thickness of the skin,
typically used for smaller areas where cosmetic appearance is crucial.
Epidermal skin graft (ESG):Only the outermost layer of the epidermis is
harvested, often used for smaller wounds.
Considerations for Repair
-
Aesthetic Considerations: The face is a highly visible area, and any repair should aim to restore optimal aesthetic appearance. This may involve careful planning and execution of the repair to minimize scarring and ensure a natural-looking outcome.
-
Functional Considerations: In addition to aesthetic concerns, functional considerations are also crucial. The repair should aim to restore normal function to the affected area, particularly in critical areas such as the lips and eyelids.
-
Timing of Repair: The timing of repair is also important. In general, early repair is preferred to minimize the risk of complications and promote optimal healing.
Fiberoptic Endotracheal Intubation
Fiberoptic endotracheal intubation is a valuable technique in airway management, particularly in situations where traditional intubation methods may be challenging or impossible. This technique utilizes a flexible fiberoptic scope to visualize the airway and facilitate the placement of an endotracheal tube. Below is an overview of the indications, techniques, and management strategies for both basic and difficult airway situations.
Indications for Fiberoptic Intubation
-
Cervical Spine Stability:
- Useful in patients with unstable cervical spine injuries where neck manipulation is contraindicated.
-
Poor Visualization of Vocal Cords:
- When a straight line view from the mouth to the larynx cannot be established, fiberoptic intubation allows for visualization of the vocal cords through the nasal or oral route.
-
Difficult Airway:
- Can be performed as an initial management strategy for patients known to have a difficult airway or as a backup technique if direct laryngoscopy fails.
-
Awake Intubation:
- Fiberoptic intubation can be performed while the patient is awake, allowing for better tolerance and cooperation, especially in cases of anticipated difficult intubation.
Basic Airway Management
Basic airway management involves the following components:
-
Airway Anatomy and Evaluation: Understanding the anatomy of the airway and assessing the patient's airway for potential difficulties.
-
Mask Ventilation: Techniques for providing positive pressure ventilation using a bag-mask device.
-
Oropharyngeal and Nasal Airways: Use of adjuncts to maintain airway patency.
-
Direct Laryngoscopy and Intubation: Standard technique for intubating the trachea using a laryngoscope.
-
Laryngeal Mask Airway (LMA) Placement: An alternative airway device that can be used when intubation is not possible.
-
Indications, Contraindications, and Management of Complications: Understanding when to use each technique and how to manage potential complications.
-
Objective Structured Clinical Evaluation (OSCE): A method for assessing the skills of trainees in airway management.
-
Evaluation of Session by Trainees: Feedback and assessment of the training session to improve skills and knowledge.
Difficult Airway Management
Difficult airway management requires a systematic approach, often guided by an algorithm. Key components include:
-
Difficult Airway Algorithm: A step-by-step approach to managing difficult airways, including decision points for intervention.
-
Airway Anesthesia: Techniques for anesthetizing the airway to facilitate intubation, especially in awake intubation scenarios.
-
Fiberoptic Intubation: As previously discussed, this technique is crucial for visualizing and intubating the trachea in difficult cases.
-
Intubation with Fastrach and CTrach LMA: Specialized LMAs designed for facilitating intubation.
-
Intubation with Shikhani Optical Stylet and Light Wand: Tools that assist in visualizing the airway and guiding the endotracheal tube.
-
Cricothyrotomy and Jet Ventilation: Emergency procedures for establishing an airway when intubation is not possible.
-
Combitube: A dual-lumen airway device that can be used in emergencies.
-
Intubation Over Bougie: A technique that uses a bougie to facilitate intubation when direct visualization is difficult.
-
Retrograde Wire Intubation: A method that involves passing a wire through the cricothyroid membrane to guide the endotracheal tube.
-
Indications, Contraindications, and Management of Complications: Understanding when to use each technique and how to manage complications effectively.
-
Objective Structured Clinical Evaluation (OSCE): Assessment of trainees' skills in managing difficult airways.
-
Evaluation of Session by Trainees: Feedback and assessment to enhance learning and skill development.
Visor Osteotomy
Visor osteotomy is a surgical procedure primarily aimed at increasing the height of the mandibular ridge to enhance denture support. This technique is particularly beneficial for patients with resorbed or atrophic mandibles, where the lack of adequate bone height can compromise the retention and stability of dentures.
Goals of Visor Osteotomy
- Increase Mandibular Ridge Height: The primary objective is to augment the height of the mandibular ridge, providing a more favorable foundation for denture placement.
- Improve Denture Support: By increasing the ridge height, the procedure aims to enhance the retention and stability of dentures, leading to improved function and patient satisfaction.
Procedure Overview
-
Incision and Exposure:
- A surgical incision is made in the oral mucosa to expose the mandible.
- The incision is typically placed along the vestibular area to minimize scarring and optimize healing.
-
Central Splitting of the Mandible:
- The mandible is carefully split in the buccolingual dimension. This involves creating a central osteotomy that divides the mandible into two sections.
- The split allows for manipulation of the bone segments to achieve the desired height.
-
Superior Positioning of the Lingual Section:
- The lingual section of the mandible is then repositioned superiorly. This elevation is crucial for increasing the height of the ridge.
- The repositioned segment is stabilized using wires or other fixation devices to maintain the new position during the healing process.
-
Bone Grafting:
- Cancellous bone graft material is placed at the outer cortex over the superior labial junction. This grafting material helps to improve the contour of the mandible and provides additional support for the overlying soft tissues.
- The use of bone grafts can enhance the healing process and promote new bone formation in the area.
-
Closure:
- The surgical site is closed in layers, ensuring that the mucosa and underlying tissues are properly approximated.
- Postoperative care instructions are provided to the patient to facilitate healing and minimize complications.
Indications
- Atrophic Mandible: Patients with significant bone resorption in the mandible, often seen in edentulous individuals, are prime candidates for this procedure.
- Denture Retention Issues: Individuals experiencing difficulties with denture retention and stability due to inadequate ridge height may benefit from visor osteotomy.
Benefits
- Enhanced Denture Support: By increasing the height of the mandibular ridge, patients can achieve better retention and stability of their dentures.
- Improved Aesthetics: The procedure can also enhance the facial contour, contributing to improved aesthetics for the patient.
- Functional Improvement: Patients may experience improved chewing function and overall quality of life following the procedure.
Considerations and Risks
- Surgical Risks: As with any surgical procedure, there are risks involved, including infection, bleeding, and complications related to anesthesia.
- Healing Time: Patients should be informed about the expected healing time and the importance of following postoperative care instructions.
- Follow-Up: Regular follow-up appointments are necessary to monitor healing and assess the need for any adjustments to dentures.
Hemostatic Agents
Hemostatic agents are critical in surgical procedures to control bleeding and promote wound healing. Various materials are used, each with unique properties and mechanisms of action. Below is a detailed overview of some commonly used hemostatic agents, including Gelfoam, Oxycel, Surgical (Oxycellulose), and Fibrin Glue.
1. Gelfoam
-
Composition: Gelfoam is made from gelatin and has a sponge-like structure.
-
Mechanism of Action:
- Gelfoam does not have intrinsic hemostatic properties; its hemostatic effect is primarily due to its large surface area, which comes into contact with blood.
- When Gelfoam absorbs blood, it swells and exerts pressure on the bleeding site, providing a scaffold for the formation of a fibrin network.
-
Application:
- Gelfoam should be moistened in saline or thrombin solution before application to ensure optimal performance. It is essential to remove all air from the interstices to maximize its effectiveness.
-
Absorption: Gelfoam is absorbed by the body through phagocytosis, typically within a few weeks.
2. Oxycel
-
Composition: Oxycel is made from oxidized cellulose.
-
Mechanism of Action:
- Upon application, Oxycel releases cellulosic acid, which has a strong affinity for hemoglobin, leading to the formation of an artificial clot.
- The acid produced during the wetting process can inactivate thrombin and other hemostatic agents, which is why Oxycel should be applied dry.
-
Limitations:
- The acid produced can inhibit epithelialization, making Oxycel unsuitable for use over epithelial surfaces.
3. Surgical (Oxycellulose)
-
Composition: Surgical is a glucose polymer-based sterile knitted fabric created through the controlled oxidation of regenerated cellulose.
-
Mechanism of Action:
- The local hemostatic mechanism relies on the binding of hemoglobin to oxycellulose, allowing the dressing to expand into a gelatinous mass. This mass acts as a scaffold for clot formation and stabilization.
-
Application:
- Surgical can be applied dry or soaked in thrombin solution, providing flexibility in its use.
-
Absorption: It is removed by liquefaction and phagocytosis over a period of one week to one month. Unlike Oxycel, Surgical does not inhibit epithelialization and can be used over epithelial surfaces.
4. Fibrin Glue
-
Composition: Fibrin glue is a biological adhesive that contains thrombin, fibrinogen, factor XIII, and aprotinin.
-
Mechanism of Action:
- Thrombin converts fibrinogen into an unstable fibrin clot, while factor XIII stabilizes the clot. Aprotinin prevents the degradation of the clot.
- During wound healing, fibroblasts migrate through the fibrin meshwork, forming a more permanent framework composed of collagen fibers.
-
Applications:
- Fibrin glue is used in various surgical procedures to promote hemostasis and facilitate tissue adhesion. It is particularly useful in areas where traditional sutures may be challenging to apply.