Talk to us?

- NEETMDS- courses
Oral and Maxillofacial Surgery

Osteomyelitis is an infection of the bone that can occur in the jaw, particularly in the mandible, and is characterized by a range of clinical features. Understanding these features is essential for effective diagnosis and management, especially in the context of preparing for the Integrated National Board Dental Examination (INBDE). Here’s a detailed overview of the clinical features, occurrence, and implications of osteomyelitis, particularly in adults and children.

Occurrence

  • Location: In adults, osteomyelitis is more common in the mandible than in the maxilla. The areas most frequently affected include:
    • Alveolar process
    • Angle of the mandible
    • Posterior part of the ramus
    • Coronoid process
  • Rarity: Osteomyelitis of the condyle is reportedly rare (Linsey, 1953).

Clinical Features

Early Symptoms

  1. Generalized Constitutional Symptoms:

    • Fever: High intermittent fever is common.
    • Malaise: Patients often feel generally unwell.
    • Gastrointestinal Symptoms: Nausea, vomiting, and anorexia may occur.
  2. Pain:

    • Nature: Patients experience deep-seated, boring, continuous, and intense pain in the affected area.
    • Location: The pain is typically localized to the mandible.
  3. Neurological Symptoms:

    • Paresthesia or Anesthesia: Intermittent paresthesia or anesthesia of the lower lip can occur, which helps differentiate osteomyelitis from an alveolar abscess.
  4. Facial Swelling:

    • Cellulitis: Patients may present with facial cellulitis or indurated swelling, which is more confined to the periosteal envelope and its contents.
    • Mechanisms:
      • Thrombosis of the inferior alveolar vasa nervorum.
      • Increased pressure from edema in the inferior alveolar canal.
    • Dental Symptoms: Affected teeth may be tender to percussion and may appear loose.
  5. Trismus:

    • Limited mouth opening due to muscle spasm or inflammation in the area.

Pediatric Considerations

  • In children, osteomyelitis can present more severely and may be characterized by:
    • Fulminating Course: Rapid onset and progression of symptoms.
    • Severe Involvement: Both maxilla and mandible can be affected.
    • Complications: The presence of unerupted developing teeth buds can complicate the condition, as they may become necrotic and act as foreign bodies, prolonging the disease process.
    • TMJ Involvement: Long-term involvement of the temporomandibular joint (TMJ) can lead to ankylosis, affecting the growth and development of facial structures.

Radiographic Changes

  • Timing of Changes: Radiographic changes typically occur only after the initiation of the osteomyelitis process.
  • Bone Loss: Significant radiographic changes are noted only after 30% to 60% of mineralized bone has been destroyed.
  • Delay in Detection: This degree of bone alteration requires a minimum of 4 to 8 days after the onset of acute osteomyelitis for changes to be visible on radiographs.

Tests for Efficiency in Heat Sterilization – Sterilization Monitoring

Effective sterilization is crucial in healthcare settings to ensure the safety of patients and the efficacy of medical instruments. Various monitoring techniques are employed to evaluate the sterilization process, including mechanical, chemical, and biological parameters. Here’s an overview of these methods:

1. Mechanical Monitoring

  • Parameters Assessed:

    • Cycle Time: The duration of the sterilization cycle.
    • Temperature: The temperature reached during the sterilization process.
    • Pressure: The pressure maintained within the sterilizer.
  • Methods:

    • Gauges and Displays: Observing the gauges or digital displays on the sterilizer provides real-time data on the cycle parameters.
    • Recording Devices: Some tabletop sterilizers are equipped with recording devices that print out the cycle parameters for each load.
  • Interpretation:

    • While correct readings indicate that the sterilization conditions were likely met, incorrect readings can signal potential issues with the sterilizer, necessitating further investigation.

2. Biological Monitoring

  • Spore Testing:
    • Biological Indicators: This involves using spore strips or vials containing Geobacillus stearothermophilus, a heat-resistant bacterium.
    • Frequency: Spore testing should be conducted weekly to verify the proper functioning of the autoclave.
    • Interpretation: If the spores are killed after the sterilization cycle, it confirms that the sterilization process was effective.

3. Thermometric Testing

  • Thermocouple:
    • A thermocouple is used to measure temperature at two locations:
      • Inside a Test Pack: A thermocouple is placed within a test pack of towels to assess the temperature reached in the center of the load.
      • Chamber Drain: A second thermocouple measures the temperature at the chamber drain.
    • Comparison: The readings from both locations are compared to ensure that the temperature is adequate throughout the load.

4. Chemical Monitoring

  • Brown’s Test:

    • This test uses ampoules containing a chemical indicator that changes color based on temperature.
    • Color Change: The indicator changes from red through amber to green at a specific temperature, confirming that the required temperature was reached.
  • Autoclave Tape:

    • Autoclave tape is printed with sensitive ink that changes color when exposed to specific temperatures.
    • Bowie-Dick Test: This test is a specific application of autoclave tape, where two strips are placed on a piece of square paper and positioned in the center of the test pack.
    • Test Conditions: When subjected to a temperature of 134°C for 3.5 minutes, uniform color development along the strips indicates that steam has penetrated the load effectively.

Coagulation Tests: PT and PTT

Prothrombin Time (PT) and Partial Thromboplastin Time (PTT) are laboratory tests used to evaluate the coagulation pathways involved in blood clotting. Understanding these tests is crucial for diagnosing bleeding disorders and managing patients with specific factor deficiencies.

Prothrombin Time (PT)

  • Purpose: PT is primarily used to assess the extrinsic pathway of coagulation.
  • Factors Tested: It evaluates the function of factors I (fibrinogen), II (prothrombin), V, VII, and X.
  • Clinical Use: PT is commonly used to monitor patients on anticoagulant therapy (e.g., warfarin) and to assess bleeding risk before surgical procedures.

Partial Thromboplastin Time (PTT)

  • Purpose: PTT is used to assess the intrinsic pathway of coagulation.
  • Factors Tested: It evaluates the function of factors I (fibrinogen), II (prothrombin), V, VIII, IX, X, XI, and XII.
  • Clinical Use: PTT is often used to monitor patients on heparin therapy and to evaluate bleeding disorders.

Specific Factor Deficiencies

In certain bleeding disorders, specific factor deficiencies can lead to increased bleeding risk. Preoperative management may involve the administration of the respective clotting factors or antifibrinolytic agents to minimize bleeding during surgical procedures.

  1. Hemophilia A:

    • Deficiency: Factor VIII deficiency.
    • Management: Administration of factor VIII concentrate before surgery.
  2. Hemophilia B:

    • Deficiency: Factor IX deficiency.
    • Management: Administration of factor IX concentrate before surgery.
  3. Hemophilia C:

    • Deficiency: Factor XI deficiency.
    • Management: Administration of factor XI concentrate or fresh frozen plasma (FFP) may be considered.
  4. Von Willebrand’s Disease:

    • Deficiency: Deficiency or dysfunction of von Willebrand factor (vWF), which is important for platelet adhesion.
    • Management: Desmopressin (DDAVP) may be administered to increase vWF levels, or factor replacement therapy may be used.
  5. Antifibrinolytic Agent:

    • Aminocaproic Acid: This antifibrinolytic agent can be used to help stabilize clots and reduce bleeding during surgical procedures, particularly in patients with bleeding disorders.

Augmentation of the Inferior Border of the Mandible

Mandibular augmentation refers to surgical procedures aimed at increasing the height or contour of the mandible, particularly the inferior border. This type of augmentation is often performed to improve the support for dentures, enhance facial aesthetics, or correct deformities. Below is an overview of the advantages and disadvantages of augmenting the inferior border of the mandible.

Advantages of Inferior Border Augmentation

  1. Preservation of the Vestibule:

    • The procedure does not obliterate the vestibule, allowing for the immediate placement of an interim denture. This is particularly beneficial for patients who require prosthetic support soon after surgery.
  2. No Change in Vertical Dimension:

    • Augmentation of the inferior border does not alter the vertical dimension of the occlusion, which is crucial for maintaining proper bite relationships and avoiding complications associated with changes in jaw alignment.
  3. Facilitation of Secondary Vestibuloplasty:

    • The procedure makes subsequent vestibuloplasty easier. By maintaining the vestibular space, it allows for better access and manipulation during any future surgical interventions aimed at deepening the vestibule.
  4. Protection of the Graft:

    • The graft used for augmentation is not subjected to direct masticatory forces, reducing the risk of graft failure and promoting better healing. This is particularly important in ensuring the longevity and stability of the augmentation.

Disadvantages of Inferior Border Augmentation

  1. Extraoral Scar:

    • The procedure typically involves an incision that can result in an extraoral scar. This may be a cosmetic concern for some patients, especially if the scar is prominent or does not heal well.
  2. Potential Alteration of Facial Appearance:

    • If the submental and submandibular tissues are not initially loose, there is a risk of altering the facial appearance. Tight or inelastic tissues may lead to distortion or asymmetry postoperatively.
  3. Limited Change in Superior Surface Shape:

    • The augmentation primarily affects the inferior border of the mandible and may not significantly change the shape of the superior surface of the mandible. This limitation can affect the overall contour and aesthetics of the jawline.
  4. Surgical Risks:

    • As with any surgical procedure, there are inherent risks, including infection, bleeding, and complications related to anesthesia. Additionally, there may be risks associated with the grafting material used.

Approaches to the Oral Cavity in Oral Cancer Treatment

In the management of oral cancer, surgical approaches are tailored to the location and extent of the lesions. The choice of surgical technique is crucial for achieving adequate tumor resection while preserving surrounding structures and function. Below are the primary surgical approaches used in the treatment of oral cancer:

1. Peroral Approach

  • Indication: This approach is primarily used for small, anteriorly placed lesions within the oral cavity.
  • Technique: The surgeon accesses the lesion directly through the mouth without external incisions. This method is less invasive and is suitable for superficial lesions that do not require extensive resection.
  • Advantages:
    • Minimal morbidity and scarring.
    • Shorter recovery time.
  • Limitations: Not suitable for larger or posterior lesions due to limited visibility and access.

2. Lip Split Approach

  • Indication: This approach is utilized for posteriorly based lesions in the gingivobuccal complex and for performing marginal mandibulectomy.
  • Technique: A vertical incision is made through the lip, allowing for the elevation of a cheek flap. This provides better access to the posterior aspects of the oral cavity and the mandible.
  • Advantages:
    • Improved access to the posterior oral cavity.
    • Facilitates the removal of larger lesions and allows for better visualization of the surgical field.
  • Limitations: Potential for cosmetic concerns and longer recovery time compared to peroral approaches.

3. Pull-Through Approach

  • Indication: This technique is particularly useful for lesions of the tongue and floor of the mouth, especially when the posterior margin is a concern for peroral excision.
  • Technique: The lesion is accessed by pulling the tongue or floor of the mouth forward, allowing for better exposure and resection of the tumor while ensuring adequate margins.
  • Advantages:
    • Enhanced visibility and access to the posterior margins of the lesion.
    • Allows for more precise excision of tumors located in challenging areas.
  • Limitations: May require additional incisions or manipulation of surrounding tissues, which can increase recovery time.

4. Mandibulotomy (Median or Paramedian)

  • Indication: This approach is indicated for tongue and floor of mouth lesions that are close to the mandible, particularly when achieving a lateral margin of clearance is critical.
  • Technique: A mandibulotomy involves making an incision through the mandible, either in the midline (median) or slightly off-center (paramedian), to gain access to the oral cavity and the lesion.
  • Advantages:
    • Provides excellent access to deep-seated lesions and allows for adequate resection with clear margins.
    • Facilitates reconstruction if needed.
  • Limitations: Higher morbidity associated with mandibular manipulation, including potential complications such as nonunion or malocclusion.

Gow-Gates Technique for Mandibular Anesthesia

The Gow-Gates technique is a well-established method for achieving effective anesthesia of the mandibular teeth and associated soft tissues. Developed by George Albert Edwards Gow-Gates, this technique is known for its high success rate in providing sensory anesthesia to the entire distribution of the mandibular nerve (V3).

Overview

  • Challenges in Mandibular Anesthesia: Achieving successful anesthesia in the mandible is often more difficult than in the maxilla due to:
    • Greater anatomical variation in the mandible.
    • The need for deeper penetration of soft tissues.
  • Success Rate: Gow-Gates reported an astonishing success rate of approximately 99% in his experienced hands, making it a reliable choice for dental practitioners.

Anesthesia Coverage

The Gow-Gates technique provides sensory anesthesia to the following nerves:

  • Inferior Alveolar Nerve
  • Lingual Nerve
  • Mylohyoid Nerve
  • Mental Nerve
  • Incisive Nerve
  • Auriculotemporal Nerve
  • Buccal Nerve

This comprehensive coverage makes it particularly useful for procedures involving multiple mandibular teeth.

Technique

Equipment

  • Needle: A 25- or 27-gauge long needle is recommended for this technique.

Injection Site and Target Area

  1. Area of Insertion:

    • The injection is performed on the mucous membrane on the mesial aspect of the mandibular ramus.
    • The insertion point is located on a line drawn from the intertragic notch to the corner of the mouth, just distal to the maxillary second molar.
  2. Target Area:

    • The target for the injection is the lateral side of the condylar neck, just below the insertion of the lateral pterygoid muscle.

Landmarks

Extraoral Landmarks:

  • Lower Border of the Tragus: This serves as a reference point. The center of the external auditory meatus is the ideal landmark, but since it is concealed by the tragus, the lower border is used as a visual aid.
  • Corner of the Mouth: This helps in aligning the injection site.

Intraoral Landmarks:

  • Height of Injection: The needle tip should be placed just below the mesiopalatal cusp of the maxillary second molar to establish the correct height for the injection.
  • Penetration Point: The needle should penetrate the soft tissues just distal to the maxillary second molar at the height established in the previous step.

Maxillectomy

Maxillectomy is a surgical procedure involving the resection of the maxilla (upper jaw) and is typically performed to remove tumors, treat severe infections, or address other pathological conditions affecting the maxillary region. The procedure requires careful planning and execution to ensure adequate access, removal of the affected tissue, and preservation of surrounding structures for optimal functional and aesthetic outcomes.

Surgical Access and Incision

  1. Weber-Fergusson Incision:

    • The classic approach to access the maxilla is through the Weber-Fergusson incision. This incision provides good visibility and access to the maxillary region.
    • Temporary Tarsorrhaphy: The eyelids are temporarily closed using tarsorrhaphy sutures to protect the eye during the procedure.
  2. Tattooing for Aesthetic Alignment:

    • To achieve better cosmetic results, it is recommended to tattoo the vermilion border and other key points on both sides of the incision with methylene blue. These points serve as guides for alignment during closure.
  3. Incision Design:

    • The incision typically splits the midline of the upper lip but can be modified for better cosmetic outcomes by incising along the philtral ridges and offsetting the incision at the vermilion border.
    • The incision is turned 2 mm from the medial canthus of the eye. Intraorally, the incision continues through the gingival margin and connects with a horizontal incision at the depth of the labiobuccal vestibule, extending back to the maxillary tuberosity.
  4. Continuation of the Incision:

    • From the maxillary tuberosity, the incision turns medially across the posterior edge of the hard palate and then turns 90 degrees anteriorly, several millimeters to the proximal side of the midline, crossing the gingival margin again if possible.
  5. Incision to Bone:

    • The incision is carried down to the bone, except beneath the lower eyelid, where the orbicularis oculi muscle is preserved. The cheek flap is then reflected back to the tuberosity.

Surgical Procedure

  1. Extraction and Elevation:

    • The central incisor on the involved side is extracted, and the gingival and palatal mucosa are elevated back to the midline.
  2. Deepening the Incision:

    • The incision extending around the nose is deepened into the nasal cavity. The palatal bone is divided near the midline using a saw blade or bur.
  3. Separation of Bone:

    • The basal bone is separated from the frontal process of the maxilla using an osteotome. The orbicularis oculi muscle is retracted superiorly, and the bone cut is extended across the maxilla, just below the infraorbital rim, into the zygoma.
  4. Maxillary Sinus:

    • If the posterior wall of the maxillary sinus has not been invaded by the tumor, it is separated from the pterygoid plates using a pterygoid chisel.
  5. Specimen Removal:

    • The entire specimen is removed by severing the remaining attachments with large curved scissors placed behind the maxilla.

Postoperative Considerations

  • Wound Care: Proper care of the surgical site is essential to prevent infection and promote healing.
  • Rehabilitation: Patients may require rehabilitation to address functional issues related to speech, swallowing, and facial aesthetics.
  • Follow-Up: Regular follow-up appointments are necessary to monitor healing and assess for any complications or recurrence of disease.

Explore by Exams