Talk to us?

Oral and Maxillofacial Surgery - NEETMDS- courses
Oral and Maxillofacial Surgery

Intraligamentary Injection and Supraperiosteal Technique

Intraligamentary Injection

  • The intraligamentary injection technique is a simple and effective method for achieving localized anesthesia in dental procedures. It requires only a small volume of anesthetic solution and produces rapid onset of anesthesia.
  • Technique:

    1. Needle Placement:
      • The needle is inserted into the gingival sulcus, typically on the mesial surface of the tooth.
      • The needle is then advanced along the root surface until resistance is encountered, indicating that the needle is positioned within the periodontal ligament.
    2. Anesthetic Delivery:
      • Approximately 0.2 ml of anesthetic solution is deposited into the periodontal ligament space.
      • For multirooted teeth, injections should be made both mesially and distally to ensure adequate anesthesia of all roots.
  • Considerations:

    • Significant pressure is required to express the anesthetic solution into the periodontal ligament, which can be a factor to consider during administration.
    • This technique is particularly useful for localized procedures where rapid anesthesia is desired.

Supraperiosteal Technique (Local Infiltration)

  • The supraperiosteal injection technique is commonly used for achieving anesthesia in the maxillary arch, particularly for single-rooted teeth.
  • Technique:

    1. Anesthetic Injection:

      • For the first primary molar, the bone overlying the tooth is thin, allowing for effective anesthesia by injecting the anesthetic solution opposite the apices of the roots.
    2. Challenges with Multirooted Teeth:

      • The thick zygomatic process can complicate the anesthetic delivery for the buccal roots of the second primary molar and first permanent molars.
      • Due to the increased thickness of bone in this area, the supraperiosteal injection at the apices of the roots of the second primary molar may be less effective.
    3. Supplemental Injection:

      • To enhance anesthesia, a supplemental injection should be administered superior to the maxillary tuberosity area to block the posterior superior alveolar nerve.
      • This additional injection compensates for the bone thickness and the presence of the posterior middle superior alveolar nerve plexus, which can affect the efficacy of the initial injection.

Velopharyngeal Insufficiency (VPI)

Velopharyngeal insufficiency (VPI) is characterized by inadequate closure of the nasopharyngeal airway during speech production, leading to speech disorders such as hypernasality and nasal regurgitation. This condition is particularly relevant in patients who have undergone cleft palate repair, as the surgical success does not always guarantee proper function of the velopharyngeal mechanism.

Etiology of VPI

The etiology of VPI following cleft palate repair is multifactorial and can include:

  1. Inadequate Surgical Repair: Insufficient repair of the musculature involved in velopharyngeal closure can lead to persistent VPI. This may occur if the muscles are not properly repositioned or if there is inadequate tension in the repaired tissue.

  2. Anatomical Variations: Variations in the anatomy of the soft palate, pharynx, and surrounding structures can contribute to VPI. These variations may not be fully addressed during initial surgical repair.

  3. Neuromuscular Factors: Impaired neuromuscular function of the muscles involved in velopharyngeal closure can also lead to VPI, which may not be correctable through surgical means alone.

Surgical Management of VPI

Pharyngoplasty: One of the surgical options for managing VPI is pharyngoplasty, which aims to improve the closure of the nasopharyngeal port during speech.

  • Historical Background: The procedure was first described by Hynes in 1951 and has since been modified by various authors to enhance its effectiveness and reduce complications.

Operative Procedure

  1. Flap Creation: The procedure involves the creation of two superiorly based myomucosal flaps from each posterior tonsillar pillar. Care is taken to include as much of the palatopharyngeal muscle as possible in the flaps.

  2. Flap Elevation: The flaps are elevated carefully to preserve their vascular supply and muscular integrity.

  3. Flap Insetting: The flaps are then attached and inset within a horizontal incision made high on the posterior pharyngeal wall. This technique aims to create a single nasopharyngeal port rather than the two ports typically created with a superiorly based pharyngeal flap.

  4. Contractile Ridge Formation: The goal of the procedure is to establish a contractile ridge posteriorly, which enhances the function of the velopharyngeal valve, thereby improving closure during speech.

Advantages of Sphincter Pharyngoplasty

  • Lower Complication Rate: One of the main advantages of sphincter pharyngoplasty over the traditional superiorly based flap technique is the lower incidence of complications related to nasal airway obstruction. This is particularly important for patient comfort and quality of life post-surgery.

  • Improved Speech Outcomes: By creating a more effective velopharyngeal mechanism, patients often experience improved speech outcomes, including reduced hypernasality and better articulation.

Classification of Mandibular Fractures

Mandibular fractures are common injuries that can result from various causes, including trauma, accidents, and sports injuries. Understanding the classification and common sites of mandibular fractures is essential for effective diagnosis and management. Below is a detailed overview of the classification of mandibular fractures, focusing on the common sites and patterns of fracture.

General Overview

  • Weak Points: The mandible has specific areas that are more susceptible to fractures due to their anatomical structure. The condylar neck is considered the weakest point and the most common site of mandibular fractures. Other common sites include the angle of the mandible and the region of the canine tooth.

  • Indirect Transmission of Energy: Fractures can occur due to indirect forces transmitted through the mandible, which may lead to fractures of the condyle even if the impact is not directly on that area.

Patterns of Mandibular Fractures

  1. Fracture of the Condylar Neck:

    • Description: The neck of the condyle is the most common site for mandibular fractures. This area is particularly vulnerable due to its anatomical structure and the forces applied during trauma.
    • Clinical Significance: Fractures in this area can affect the function of the temporomandibular joint (TMJ) and may lead to complications such as malocclusion or limited jaw movement.
  2. Fracture of the Angle of the Mandible:

    • Description: The angle of the mandible is the second most common site for fractures, typically occurring through the last molar tooth.
    • Clinical Significance: Fractures in this region can impact the integrity of the mandible and may lead to displacement of the fractured segments. They can also affect the function of the muscles of mastication.
  3. Fracture in the Region of the Canine Tooth:

    • Description: The canine region is another weak point in the mandible, where fractures can occur due to trauma.
    • Clinical Significance: Fractures in this area may involve the alveolar process and can affect the stability of the canine tooth, leading to potential complications in dental alignment and occlusion.

Additional Classification Systems

Mandibular fractures can also be classified based on various criteria, including:

  1. Location:

    • Symphyseal Fractures: Fractures occurring at the midline of the mandible.
    • Parasymphyseal Fractures: Fractures located just lateral to the midline.
    • Body Fractures: Fractures occurring along the body of the mandible.
    • Angle Fractures: Fractures at the angle of the mandible.
    • Condylar Fractures: Fractures involving the condylar process.
  2. Type of Fracture:

    • Simple Fractures: Fractures that do not involve the surrounding soft tissues.
    • Compound Fractures: Fractures that communicate with the oral cavity or skin, leading to potential infection.
    • Comminuted Fractures: Fractures that result in multiple fragments of bone.
  3. Displacement:

    • Non-displaced Fractures: Fractures where the bone fragments remain in alignment.
    • Displaced Fractures: Fractures where the bone fragments are misaligned, requiring surgical intervention for realignment.

Unicystic Ameloblastoma

Unicystic ameloblastoma is a specific type of ameloblastoma characterized by a single cystic cavity that exhibits ameloblastomatous differentiation in its lining. This type of ameloblastoma is distinct from other forms due to its unique clinical, radiographic features, and behavior.

Characteristics of Unicystic Ameloblastoma

  1. Definition:

    • Unicystic ameloblastoma is defined as a single cystic cavity that shows ameloblastomatous differentiation in the lining.
  2. Clinical Features:

    • More than 90% of unicystic ameloblastomas are found in the posterior mandible.
    • They typically surround the crown of an unerupted mandibular third molar and may resemble a dentigerous cyst.
  3. Radiographic Features:

    • Appears as a well-defined radiolucent lesion, often associated with the crown of an impacted tooth.
  4. Histopathology:

    • There are three types of unicystic ameloblastomas:
      • Luminal: The cystic lining shows ameloblastomatous changes without infiltration into the wall.
      • Intraluminal: The tumor is located within the cystic cavity but does not infiltrate the wall.
      • Mural: The wall of the lesion is infiltrated by typical follicular or plexiform ameloblastoma. This type behaves similarly to conventional ameloblastoma and requires more aggressive treatment.
  5. Recurrence Rate:

    • Unicystic ameloblastomas, particularly those without mural extension, have a low recurrence rate following conservative treatment.

Treatment of Ameloblastomas

  1. Conventional (Follicular) Ameloblastoma:

    • Surgical Resection: Recommended with 1.0 to 1.5 cm margins and removal of one uninvolved anatomic barrier.
    • Enucleation and Curettage: If used, this method has a high recurrence rate (70-85%).
  2. Unicystic Ameloblastoma (Without Mural Extension):

    • Conservative Treatment: Enucleation and curettage are typically successful due to the intraluminal location of the tumor.
  3. Unicystic Ameloblastoma (With Mural Extension):

    • Aggressive Treatment: Managed similarly to conventional ameloblastomas due to the infiltrative nature of the mural component.
  4. Intraosseous Solid and Multicystic Ameloblastomas:

    • Mandibular Excision: Block resection is performed, either with or without continuity defect, removing up to 1.5 cm of clinically normal bone around the margin.
  5. Peripheral Ameloblastoma:

    • Simple Excision: These tumors are less aggressive and can be treated with simple excision, ensuring a rim of soft tissue tumor-free margins (1-1.5 cm).
    • If bone involvement is indicated by biopsy, block resection with continuity defect is preferred.
  6. Recurrent Ameloblastoma:

    • Recurrences can occur 5-10 years after initial treatment and are best managed by resection with 1.5 cm margins.
    • Resection should be based on initial radiographs rather than those showing recurrence.

Submasseteric Space Infection

Submasseteric space infection refers to an infection that occurs in the submasseteric space, which is located beneath the masseter muscle. This space is clinically significant in the context of dental infections, particularly those arising from the lower third molars (wisdom teeth) or other odontogenic sources. Understanding the anatomy and potential spread of infections in this area is crucial for effective diagnosis and management.

Anatomy of the Submasseteric Space

  1. Location:

    • The submasseteric space is situated beneath the masseter muscle, which is a major muscle involved in mastication (chewing).
    • This space is bordered superiorly by the masseter muscle and inferiorly by the lower border of the ramus of the mandible.
  2. Boundaries:

    • Inferior Boundary: The extension of an abscess or infection inferiorly is limited by the firm attachment of the masseter muscle to the lower border of the ramus of the mandible. This attachment creates a barrier that can restrict the spread of infection downward.
    • Anterior Boundary: The forward spread of infection beyond the anterior border of the ramus is restricted by the anterior tail of the tendon of the temporalis muscle, which inserts into the anterior border of the ramus. This anatomical feature helps to contain infections within the submasseteric space.
  3. Posterior Boundary: The posterior limit of the submasseteric space is generally defined by the posterior border of the ramus of the mandible.

Clinical Implications

  1. Sources of Infection:

    • Infections in the submasseteric space often arise from odontogenic sources, such as:
      • Pericoronitis associated with impacted lower third molars.
      • Dental abscesses from other teeth in the mandible.
      • Periodontal infections.
  2. Symptoms:

    • Patients with submasseteric space infections may present with:
      • Swelling and tenderness in the area of the masseter muscle.
      • Limited mouth opening (trismus) due to muscle spasm or swelling.
      • Pain that may radiate to the ear or temporomandibular joint (TMJ).
      • Fever and systemic signs of infection in more severe cases.
  3. Diagnosis:

    • Diagnosis is typically made through clinical examination and imaging studies, such as panoramic radiographs or CT scans, to assess the extent of the infection and its relationship to surrounding structures.
  4. Management:

    • Treatment of submasseteric space infections usually involves:
      • Antibiotic Therapy: Broad-spectrum antibiotics are often initiated to control the infection.
      • Surgical Intervention: Drainage of the abscess may be necessary, especially if there is significant swelling or if the patient is not responding to conservative management. Incision and drainage can be performed intraorally or extraorally, depending on the extent of the infection.
      • Management of the Source: Addressing the underlying dental issue, such as extraction of an impacted tooth or treatment of a dental abscess, is essential to prevent recurrence.

Fixation of Condylar Fractures

Condylar fractures of the mandible can be challenging to manage due to their location and the functional demands placed on the condylar region. Various fixation techniques have been developed to achieve stable fixation and promote healing. Below is an overview of the different methods of fixation for condylar fractures, including their advantages, disadvantages, and indications.

1. Miniplate Osteosynthesis

  • Overview:

    • Miniplate osteosynthesis involves the use of condylar plates and screw systems designed to withstand biochemical forces, minimizing micromotion at the fracture site.
  • Primary Bone Healing:

    • Under optimal conditions of stability and fracture reduction, primary bone healing can occur, allowing new bone to form along the fracture surface without the formation of fibrous tissue.
  • Plate Placement:

    • High condylar fractures may accommodate only one plate with two screws above and below the fracture line, parallel to the posterior border, providing adequate stability in most cases.
    • For low condylar fractures, two plates may be required. The posterior plate should parallel the posterior ascending ramus, while the anterior plate can be angulated across the fracture line.
  • Mechanical Advantage:

    • The use of two miniplates at the anterior and posterior borders of the condylar neck restores tension and compression trajectories, neutralizing functional stresses in the condylar neck.
  • Research Findings:

    • Studies have shown that the double mini plate method is the only system able to withstand normal loading forces in cadaver mandibles.

2. Dynamic Compression Plating

  • Overview:

    • Dynamic compression plating is generally not recommended for condylar fractures due to the oblique nature of the fractures, which can lead to overlap of fragment ends and loss of ramus height.
  • Current Practice:

    • The consensus is that treatment is adequate with miniplates placed in a neutral mode, avoiding the complications associated with dynamic compression plating.

3. Lag Screw Osteosynthesis

  • Overview:

    • First described for condylar fractures by Wackerbauer in 1962, lag screws provide a biomechanically advantageous method of fixation.
  • Mechanism:

    • A true lag screw has threads only on the distal end, allowing for compression when tightened against the near cortex. This central placement of the screw enhances stability.
  • Advantages:

    • Rapid application of rigid fixation and close approximation of fractured parts due to significant compression generated.
    • Less traumatic than miniplates, as there is no need to open the joint capsule.
  • Disadvantages:

    • Risk of lateralization and rotation of the condylar head if the screw is not placed centrally.
    • Requires a steep learning curve for proper application.
  • Contraindications:

    • Not suitable for cases with loss of bone in the fracture gap or comminution that could lead to displacement when compression is applied.
  • Popular Options:

    • The Eckelt screw is one of the most widely used lag screws in current practice.

4. Pin Fixation

  • Overview:

    • Pin fixation involves the use of 1.3 mm Kirschner wires (K-wires) placed into the condyle under direct vision.
  • Technique:

    • This method requires an open approach to the condylar head and traction applied to the lower border of the mandible. A minimum of three convergent K-wires is typically needed to ensure stability.

5. Resorbable Pins and Plates

  • Overview:

    • Resorbable fixation devices may take more than two years to fully resorb. Materials used include self-reinforced poly-L-lactide screws (SR-PLLA), polyglycolide pins, and absorbable alpha-hydroxy polyesters.
  • Indications:

    • These materials are particularly useful in pediatric patients or in situations where permanent hardware may not be desirable.

Odontogenic Keratocyst (OKC)

The odontogenic keratocyst (OKC) is a unique and aggressive cystic lesion of the jaw with distinct histological features and a high recurrence rate. Below is a comprehensive overview of its characteristics, treatment options, and prognosis.

Characteristics of Odontogenic Keratocyst

  1. Definition and Origin:

    • The term "odontogenic keratocyst" was first introduced by Philipsen in 1956. It is believed to originate from remnants of the dental lamina or basal cells of the oral epithelium.
  2. Biological Behavior:

    • OKCs exhibit aggressive behavior and have a recurrence rate of 13% to 60%. They are considered to have a neoplastic nature rather than a purely developmental origin.
  3. Histological Features:

    • The cyst lining is typically 6 to 10 cells thick, with a palisaded basal cell layer and a surface of corrugated parakeratin.
    • The epithelium may produce orthokeratin (10%), parakeratin (83%), or both (7%).
    • No rete ridges are present, and mitotic activity is frequent, contributing to the cyst's growth pattern.
  4. Types:

    • Orthokeratinized OKC: Less aggressive, lower recurrence rate, often associated with dentigerous cysts.
    • Parakeratinized OKC: More aggressive with a higher recurrence rate.
  5. Clinical Features:

    • Age: Peak incidence occurs in individuals aged 20 to 30 years.
    • Gender: Predilection for males (approximately 1:5 male to female ratio).
    • Location: More commonly found in the mandible, particularly in the ramus and third molar area. In the maxilla, the third molar area is also a common site.
    • Symptoms: Patients may be asymptomatic, but symptoms can include pain, soft-tissue swelling, drainage, and paresthesia of the lip or teeth.
  6. Radiographic Features:

    • Typically appears as a unilocular lesion with a well-defined peripheral rim, although multilocular varieties (20%) can occur.
    • Scalloping of the borders is often present, and it may be associated with the crown of a retained tooth (40%).

Treatment Options for Odontogenic Keratocyst

  1. Surgical Excision:

    • Enucleation: Complete removal of the cyst along with the surrounding tissue.
    • Curettage: Scraping of the cyst lining after enucleation to remove any residual cystic tissue.
  2. Chemical Cauterization:

    • Carnoy’s Solution: Application of Carnoy’s solution (6 ml absolute alcohol, 3 ml chloroform, and 1 ml acetic acid) after enucleation and curettage can help reduce recurrence rates. It penetrates the bone and can assist in freeing the cyst from the bone wall.
  3. Marsupialization:

    • This technique involves creating a window in the cyst to allow for drainage and reduction in size, which can be beneficial in larger cysts or in cases where complete excision is not feasible.
  4. Primary Closure:

    • After enucleation and curettage, the site may be closed primarily or packed open to allow for healing.
  5. Follow-Up:

    • Regular follow-up is essential due to the high recurrence rate. Patients should be monitored for signs of recurrence, especially in the first few years post-treatment.

Prognosis

  • The prognosis for OKC is variable, with a significant recurrence rate attributed to the aggressive nature of the lesion and the potential for residual cystic tissue.
  • Recurrence is not necessarily related to the size of the cyst or the presence of satellite cysts but is influenced by the nature of the lesion itself and the presence of dental lamina remnants.
  • Multilocular lesions tend to have a higher recurrence rate compared to unilocular ones.
  • Surgical technique does not significantly influence the likelihood of relapse.

Associated Conditions

  • Multiple OKCs can be seen in syndromes such as:
    • Nevoid Basal Cell Carcinoma Syndrome (Gorlin-Goltz Syndrome)
    • Marfan Syndrome
    • Ehlers-Danlos Syndrome
    • Noonan Syndrome

Explore by Exams