Talk to us?

- NEETMDS- courses
Oral and Maxillofacial Surgery

Classification and Management of Impacted Third Molars

Impacted third molars, commonly known as wisdom teeth, can present in various orientations and depths, influencing the difficulty of their extraction. Understanding the types of impactions and their classifications is crucial for planning surgical intervention.

Types of Impaction

  1. Mesioangular Impaction:

    • Description: The tooth is tilted toward the second molar in a mesial direction.
    • Prevalence: Comprises approximately 43% of all impacted teeth.
    • Difficulty: Generally acknowledged as the least difficult type of impaction to remove.
  2. Vertical Impaction:

    • Description: The tooth is positioned vertically, with the crown facing upward.
    • Prevalence: Accounts for about 38% of impacted teeth.
    • Difficulty: Moderate difficulty in removal.
  3. Distoangular Impaction:

    • Description: The tooth is tilted away from the second molar in a distal direction.
    • Prevalence: Comprises approximately 6% of impacted teeth.
    • Difficulty: Considered the most difficult type of impaction to remove due to the withdrawal pathway running into the mandibular ramus.
  4. Horizontal Impaction:

    • Description: The tooth is positioned horizontally, with the crown facing the buccal or lingual side.
    • Prevalence: Accounts for about 3% of impacted teeth.
    • Difficulty: More difficult than mesioangular but less difficult than distoangular.

Decreasing Level of Difficulty for Types of Impaction

  • Order of Difficulty:
    • Distoangular > Horizontal > Vertical > Mesioangular

Pell and Gregory Classification

The Pell and Gregory classification system categorizes impacted teeth based on their relationship to the mandibular ramus and the occlusal plane. This classification helps assess the difficulty of extraction.

Classification Based on Coverage by the Mandibular Ramus

  1. Class 1:

    • Description: Mesiodistal diameter of the crown is completely anterior to the anterior border of the mandibular ramus.
    • Difficulty: Easiest to remove.
  2. Class 2:

    • Description: Approximately one-half of the tooth is covered by the ramus.
    • Difficulty: Moderate difficulty.
  3. Class 3:

    • Description: The tooth is completely within the mandibular ramus.
    • Difficulty: Most difficult to remove.

Decreasing Level of Difficulty for Ramus Coverage

  • Order of Difficulty:
    • Class 3 > Class 2 > Class 1

Pell and Gregory Classification Based on Relationship to Occlusal Plane

This classification assesses the depth of the impacted tooth relative to the occlusal plane of the second molar.

  1. Class A:

    • Description: The occlusal surface of the impacted tooth is level or nearly level with the occlusal plane of the second molar.
    • Difficulty: Easiest to remove.
  2. Class B:

    • Description: The occlusal surface lies between the occlusal plane and the cervical line of the second molar.
    • Difficulty: Moderate difficulty.
  3. Class C:

    • Description: The occlusal surface is below the cervical line of the second molars.
    • Difficulty: Most difficult to remove.

Decreasing Level of Difficulty for Occlusal Plane Relationship

  • Order of Difficulty:
    • Class C > Class B > Class A

Summary of Extraction Difficulty

  • Most Difficult Impaction:
    • Distoangular impaction with Class 3 ramus coverage and Class C depth.
  • Easiest Impaction:
    • Mesioangular impaction with Class 1 ramus coverage and Class A dep

Augmentation of the Inferior Border of the Mandible

Mandibular augmentation refers to surgical procedures aimed at increasing the height or contour of the mandible, particularly the inferior border. This type of augmentation is often performed to improve the support for dentures, enhance facial aesthetics, or correct deformities. Below is an overview of the advantages and disadvantages of augmenting the inferior border of the mandible.

Advantages of Inferior Border Augmentation

  1. Preservation of the Vestibule:

    • The procedure does not obliterate the vestibule, allowing for the immediate placement of an interim denture. This is particularly beneficial for patients who require prosthetic support soon after surgery.
  2. No Change in Vertical Dimension:

    • Augmentation of the inferior border does not alter the vertical dimension of the occlusion, which is crucial for maintaining proper bite relationships and avoiding complications associated with changes in jaw alignment.
  3. Facilitation of Secondary Vestibuloplasty:

    • The procedure makes subsequent vestibuloplasty easier. By maintaining the vestibular space, it allows for better access and manipulation during any future surgical interventions aimed at deepening the vestibule.
  4. Protection of the Graft:

    • The graft used for augmentation is not subjected to direct masticatory forces, reducing the risk of graft failure and promoting better healing. This is particularly important in ensuring the longevity and stability of the augmentation.

Disadvantages of Inferior Border Augmentation

  1. Extraoral Scar:

    • The procedure typically involves an incision that can result in an extraoral scar. This may be a cosmetic concern for some patients, especially if the scar is prominent or does not heal well.
  2. Potential Alteration of Facial Appearance:

    • If the submental and submandibular tissues are not initially loose, there is a risk of altering the facial appearance. Tight or inelastic tissues may lead to distortion or asymmetry postoperatively.
  3. Limited Change in Superior Surface Shape:

    • The augmentation primarily affects the inferior border of the mandible and may not significantly change the shape of the superior surface of the mandible. This limitation can affect the overall contour and aesthetics of the jawline.
  4. Surgical Risks:

    • As with any surgical procedure, there are inherent risks, including infection, bleeding, and complications related to anesthesia. Additionally, there may be risks associated with the grafting material used.

Sagittal Split Osteotomy (SSO)

Sagittal split osteotomy (SSO) is a surgical procedure used to correct various mandibular deformities, including mandibular prognathism (protrusion of the mandible) and retrognathism (retraction of the mandible). It is considered one of the most versatile osteotomies for addressing discrepancies in the position of the mandible relative to the maxilla.

Overview of the Procedure

  1. Indications:

    • Mandibular Prognathism: In cases where the mandible is positioned too far forward, SSO can be used to setback the mandible, improving occlusion and facial aesthetics.
    • Mandibular Retrognathism: For patients with a retruded mandible, the procedure allows for advancement of the mandible to achieve a more balanced facial profile and functional occlusion.
  2. Surgical Technique:

    • The procedure involves making a sagittal split in the ramus and posterior body of the mandible. This is typically performed through an intraoral approach, which minimizes external scarring.
    • The osteotomy creates two segments of the mandible: the proximal segment (attached to the maxilla) and the distal segment (which can be repositioned).
    • Depending on the desired outcome, the distal segment can be either advanced or set back to achieve the desired occlusal relationship and aesthetic result.
  3. Cosmetic Considerations:

    • The intraoral approach used in SSO helps to avoid visible scarring on the face, making it a highly cosmetic procedure.
    • The broader bony contact between the osteotomized segments promotes better healing and stability, which is crucial for achieving long-term results.
  4. Healing and Recovery:

    • The procedure typically results in good healing due to the increased surface area of contact between the bone segments.
    • Postoperative care includes monitoring for complications, managing pain, and ensuring proper oral hygiene to prevent infection.

Advantages of Sagittal Split Osteotomy

  • Versatility: SSO can be used to correct a wide range of mandibular discrepancies, making it suitable for various clinical scenarios.
  • Cosmetic Outcome: The intraoral approach minimizes external scarring, enhancing the aesthetic outcome for patients.
  • Stability: The broad bony contact between the segments ensures good stability and promotes effective healing.
  • Functional Improvement: By correcting occlusal discrepancies, SSO can improve chewing function and overall oral health.

Considerations and Potential Complications

  • Nerve Injury: There is a risk of injury to the inferior alveolar nerve, which can lead to temporary or permanent numbness in the lower lip and chin.
  • Malocclusion: If not properly planned, there is a risk of postoperative malocclusion, which may require further intervention.
  • Infection: As with any surgical procedure, there is a risk of infection at the surgical site.

Airway Management in Medical Emergencies: Tracheostomy and Cricothyrotomy

 

1. Establishing a Patent Airway

  • Immediate Goal: The primary objective in any emergency involving airway obstruction is to ensure that the patient has a clear and patent airway to facilitate breathing.
  • Procedures Available: Various techniques exist to achieve this, ranging from nonsurgical methods to surgical interventions.

2. Surgical Interventions

A. Tracheostomy

  • A tracheostomy is a surgical procedure that involves creating an opening in the trachea (windpipe) through the neck to establish an airway.
  • Indications:
    • Prolonged mechanical ventilation.
    • Severe upper airway obstruction (e.g., due to tumors, trauma, or swelling).
    • Need for airway protection in patients with impaired consciousness or neuromuscular disorders.
  • Procedure:
    • An incision is made in the skin over the trachea, A tracheostomy incision is made between the second and third tracheal rings, which is below the larynxThe incision is usually 2–3 cm long and can be vertical or horizontaland the trachea is then opened to insert a tracheostomy tube.
    • This procedure requires considerable knowledge of anatomy and technical skill to perform safely and effectively.

B. Cricothyrotomy

  • Definition: A cricothyrotomy is a surgical procedure that involves making an incision through the skin over the cricothyroid membrane (located between the thyroid and cricoid cartilages) to establish an airway.
  • Indications:
    • Emergency situations where rapid access to the airway is required, especially when intubation is not possible.
    • Situations where facial or neck trauma makes traditional intubation difficult.
  • Procedure:
    • A vertical incision is made over the cricothyroid membrane, and a tube is inserted directly into the trachea.
    • This procedure is typically quicker and easier to perform than a tracheostomy, making it suitable for emergency situations.

3. Nonsurgical Techniques for Airway Management

A. Abdominal Thrust (Heimlich Maneuver)

  •  The Heimlich maneuver is a lifesaving technique used to relieve choking caused by a foreign body obstructing the airway.
  • Technique:
    • The rescuer stands behind the patient and wraps their arms around the patient's waist.
    • A fist is placed just above the navel, and quick, inward and upward thrusts are applied to create pressure in the abdomen, which can help expel the foreign object.
  • Indications: This technique is the first-line approach for conscious patients experiencing airway obstruction.

B. Back Blows and Chest Thrusts

  • Back Blows:
    • The rescuer delivers firm blows to the back between the shoulder blades using the heel of the hand. This can help dislodge an object obstructing the airway.
  • Chest Thrusts:
    • For patients who are obese or pregnant, chest thrusts may be more effective. The rescuer stands behind the patient and performs thrusts to the chest, similar to the Heimlich maneuver.

Surgical Approaches in Oral and Maxillofacial Surgery

In the management of tumors and lesions in the oral and maxillofacial region, various surgical approaches are employed based on the extent of the disease, the involvement of surrounding structures, and the need for reconstruction. Below is a detailed overview of the surgical techniques mentioned, along with their indications and reconstruction options.

1. Marginal / Segmental / En Bloc Resection

Definition:

  • En Bloc Resection: This technique involves the complete removal of a tumor along with a margin of healthy tissue, without disrupting the continuity of the bone. It is often used for tumors that are well-defined and localized.

Indications:

  • No Cortical Perforation: En bloc segmental resection is indicated when there is no evidence of cortical bone perforation. This allows for the removal of the tumor while preserving the structural integrity of the surrounding bone.
  • Tumor Characteristics: This approach is suitable for benign tumors or low-grade malignancies that have not invaded surrounding tissues.

2. Partial Resection (Mandibulectomy)

Definition:

  • Mandibulectomy: This procedure involves the resection of a portion of the mandible, typically performed when a tumor is present.

Indications:

  • Cortical Perforation: Mandibulectomy is indicated when there is cortical perforation of the mandible. This means that the tumor has invaded the cortical bone, necessitating a more extensive surgical approach.
  • Clearance Margin: A margin of at least 1 cm of healthy bone is typically removed to ensure complete excision of the tumor and reduce the risk of recurrence.

3. Total Resection (Hemimandibulectomy)

Definition:

  • Hemimandibulectomy: This procedure involves the resection of one half of the mandible, including the associated soft tissues.

Indications:

  • Perforation of Bone and Soft Tissue: Hemimandibulectomy is indicated when there is both perforation of the bone and involvement of the surrounding soft tissues. This is often seen in more aggressive tumors or those that have metastasized.
  • Extensive Tumor Involvement: This approach is necessary for tumors that cannot be adequately removed with less invasive techniques due to their size or location.

4. Reconstruction

Following resection, reconstruction of the jaw is often necessary to restore function and aesthetics. Several options are available for reconstruction:

a. Reconstruction Plate:

  • Description: A reconstruction plate is a rigid plate made of titanium or other biocompatible materials that is used to stabilize the bone after resection.
  • Indications: Used in cases where structural support is needed to maintain the shape and function of the mandible.

b. K-wire:

  • Description: K-wires are thin, flexible wires used to stabilize bone fragments during the healing process.
  • Indications: Often used in conjunction with other reconstruction methods to provide additional support.

c. Titanium Mesh:

  • Description: Titanium mesh is a flexible mesh that can be shaped to fit the contours of the jaw and provide support for soft tissue and bone.
  • Indications: Used in cases where there is significant bone loss and soft tissue coverage is required.

d. Rib Graft / Iliac Crest Graft:

  • Description: Autogenous bone grafts can be harvested from the rib or iliac crest to reconstruct the mandible.
  • Indications: These grafts are used when significant bone volume is needed for reconstruction, providing a biological scaffold for new bone formation.

Structure of Orbital Walls

The orbit is a complex bony structure that houses the eye and its associated structures. It is composed of several walls, each with distinct anatomical features and clinical significance. Here’s a detailed overview of the structure of the orbital walls:

1. Lateral Wall

  • Composition: The lateral wall of the orbit is primarily formed by two bones:
    • Zygomatic Bone: This bone contributes significantly to the lateral aspect of the orbit.
    • Greater Wing of the Sphenoid: This bone provides strength and stability to the lateral wall.
  • Orientation: The lateral wall is inclined at approximately 45 degrees to the long axis of the skull, which is important for the positioning of the eye and the alignment of the visual axis.

2. Medial Wall

  • Composition: The medial wall is markedly different from the lateral wall and is primarily formed by:
    • Orbital Plate of the Ethmoid Bone: This plate is very thin and fragile, making the medial wall susceptible to injury.
  • Height and Orientation: The medial wall is about half the height of the lateral wall. It is aligned parallel to the antero-posterior axis (median plane) of the skull and meets the floor of the orbit at an angle of about 45 degrees.
  • Fragility: The medial wall is extremely fragile due to its proximity to:
    • Ethmoid Air Cells: These air-filled spaces can compromise the integrity of the medial wall.
    • Nasal Cavity: The close relationship with the nasal cavity further increases the risk of injury.

3. Roof of the Orbit

  • Composition: The roof is formed by the frontal bone and is reinforced laterally by the greater wing of the sphenoid.
  • Thickness: While the roof is thin, it is structurally reinforced, which helps protect the contents of the orbit.
  • Fracture Patterns: Fractures of the roof often involve the frontal bone and tend to extend medially. Such fractures can lead to complications, including orbital hemorrhage or involvement of the frontal sinus.

4. Floor of the Orbit

  • Composition: The floor is primarily formed by the maxilla, with contributions from the zygomatic and palatine bones.
  • Thickness: The floor is very thin, typically measuring about 0.5 mm in thickness, making it particularly vulnerable to fractures.
  • Clinical Significance:
    • Blow-Out Fractures: The floor is commonly involved in "blow-out" fractures, which occur when a blunt force impacts the eye, causing the floor to fracture and displace. These fractures can be classified as:
      • Pure Blow-Out Fractures: Isolated fractures of the orbital floor.
      • Impure Blow-Out Fractures: Associated with fractures in the zygomatic area.
    • Infraorbital Groove and Canal: The presence of the infraorbital groove and canal further weakens the floor. The infraorbital nerve and vessels run through this canal, making them susceptible to injury during fractures. Compression, contusion, or direct penetration from bone spicules can lead to sensory deficits in the distribution of the infraorbital nerve.

Axial Compression in Bone Fixation

Axial compression refers to a surgical technique used in the fixation of fractured bones, where the bony ends are brought into close proximity, minimizing the inter-fragmentary gap. This technique is crucial for achieving stable fixation and promoting optimal healing of fractures, particularly in the context of internal fixation using plates and screws.

Key Concepts of Axial Compression

  1. Close Proximity of Bony Ends:

    • In axial compression, the fractured ends of the bone are aligned closely together, which is essential for effective healing. The minimal inter-fragmentary gap allows for direct contact between the bone surfaces, facilitating the healing process.
  2. Functional Dynamic Forces:

    • During normal activities, such as chewing (masticatory function), dynamic forces are generated. These forces can create stress at the fracture site, which must be countered by the static forces provided by the fixation devices (plates and screws).
  3. Static Forces from Plates and Screws:

    • The stability of the fracture fixation relies on the ability of the plates and screws to provide sufficient static forces to counteract the dynamic forces generated during function. This is critical for maintaining the alignment of the fracture and preventing displacement.
  4. Plate and Screw Specifications:

    • Plate Thickness: Plates with a thickness of 2 mm are commonly used, as they provide adequate strength and stability while minimizing soft tissue irritation.
    • Screw Specifications: Bi-cortical screws with a diameter of 2.7 mm are typically employed. These screws engage both cortices of the bone, enhancing stability and fixation strength.
  5. Principle of Inclined Plane:

    • The design of the holes in the plate and the head of the screws operates on the principle of an inclined plane. This design allows for the application of compressive forces when the screws are tightened, effectively drawing the bony fragments together.
    • As the screws are tightened, they create a compressive force that helps to stabilize the fracture and maintain the alignment of the bone fragments.

Advantages of Axial Compression

  • Enhanced Stability: By minimizing the inter-fragmentary gap and providing strong static forces, axial compression enhances the stability of the fracture fixation.
  • Promotes Healing: Close approximation of the bony ends facilitates the healing process by allowing for direct contact and reducing the risk of non-union or malunion.
  • Functional Restoration: Effective axial compression allows patients to regain function more quickly, as the fixation can withstand the dynamic forces generated during normal activities.

Explore by Exams