Talk to us?

Oral and Maxillofacial Surgery - NEETMDS- courses
Oral and Maxillofacial Surgery

Submasseteric Space Infection

Submasseteric space infection refers to an infection that occurs in the submasseteric space, which is located beneath the masseter muscle. This space is clinically significant in the context of dental infections, particularly those arising from the lower third molars (wisdom teeth) or other odontogenic sources. Understanding the anatomy and potential spread of infections in this area is crucial for effective diagnosis and management.

Anatomy of the Submasseteric Space

  1. Location:

    • The submasseteric space is situated beneath the masseter muscle, which is a major muscle involved in mastication (chewing).
    • This space is bordered superiorly by the masseter muscle and inferiorly by the lower border of the ramus of the mandible.
  2. Boundaries:

    • Inferior Boundary: The extension of an abscess or infection inferiorly is limited by the firm attachment of the masseter muscle to the lower border of the ramus of the mandible. This attachment creates a barrier that can restrict the spread of infection downward.
    • Anterior Boundary: The forward spread of infection beyond the anterior border of the ramus is restricted by the anterior tail of the tendon of the temporalis muscle, which inserts into the anterior border of the ramus. This anatomical feature helps to contain infections within the submasseteric space.
  3. Posterior Boundary: The posterior limit of the submasseteric space is generally defined by the posterior border of the ramus of the mandible.

Clinical Implications

  1. Sources of Infection:

    • Infections in the submasseteric space often arise from odontogenic sources, such as:
      • Pericoronitis associated with impacted lower third molars.
      • Dental abscesses from other teeth in the mandible.
      • Periodontal infections.
  2. Symptoms:

    • Patients with submasseteric space infections may present with:
      • Swelling and tenderness in the area of the masseter muscle.
      • Limited mouth opening (trismus) due to muscle spasm or swelling.
      • Pain that may radiate to the ear or temporomandibular joint (TMJ).
      • Fever and systemic signs of infection in more severe cases.
  3. Diagnosis:

    • Diagnosis is typically made through clinical examination and imaging studies, such as panoramic radiographs or CT scans, to assess the extent of the infection and its relationship to surrounding structures.
  4. Management:

    • Treatment of submasseteric space infections usually involves:
      • Antibiotic Therapy: Broad-spectrum antibiotics are often initiated to control the infection.
      • Surgical Intervention: Drainage of the abscess may be necessary, especially if there is significant swelling or if the patient is not responding to conservative management. Incision and drainage can be performed intraorally or extraorally, depending on the extent of the infection.
      • Management of the Source: Addressing the underlying dental issue, such as extraction of an impacted tooth or treatment of a dental abscess, is essential to prevent recurrence.

Characteristics of Middle-Third Facial Fractures

Middle-third facial fractures, often referred to as "midfacial fractures," involve the central portion of the face, including the nasal bones, maxilla, and zygomatic arch. These fractures can result from various types of trauma, such as motor vehicle accidents, falls, or physical assaults. The following points highlight the key features and clinical implications of middle-third facial fractures:

1. Oedema of the Middle Third of the Face

  • Rapid Development: Oedema (swelling) in the middle third of the face develops quickly after the injury, leading to a characteristic "balloon" appearance. This swelling is due to the accumulation of fluid in the soft tissues of the face.

  • Absence of Deep Cervical Fascia: The unique anatomical structure of the middle third of the face contributes to this swelling. The absence of deep cervical fascia in this region allows for the rapid spread of fluid, resulting in pronounced oedema.

  • Clinical Presentation: In the early stages following injury, patients with middle-third fractures often present with similar facial appearances due to the characteristic swelling. This can make diagnosis based solely on visual inspection challenging.

2. Lengthening of the Face

  • Displacement of the Middle Third: The downward and backward displacement of the middle third of the facial skeleton can lead to an increase in the overall length of the face. This displacement forces the mandible to open, which can result in a change in occlusion, particularly in the molar region.

  • Gagging of Occlusion: The altered position of the mandible can lead to a malocclusion, where the upper and lower teeth do not align properly. This can cause discomfort and difficulty in chewing or speaking.

  • Delayed Recognition of Lengthening: The true increase in facial length may not be fully appreciated until the initial oedema subsides. As the swelling decreases, the changes in facial structure become more apparent.

3. Nasal Obstruction

  • Blood Clots in the Nares: Following a middle-third fracture, the nares (nostrils) may become obstructed by blood clots, leading to nasal congestion. This can significantly impact the patient's ability to breathe through the nose.

  • Mouth Breathing: Due to the obstruction, patients are often forced to breathe through their mouths, which can lead to additional complications, such as dry mouth and increased risk of respiratory infections.

Coagulation Tests: PT and PTT

Prothrombin Time (PT) and Partial Thromboplastin Time (PTT) are laboratory tests used to evaluate the coagulation pathways involved in blood clotting. Understanding these tests is crucial for diagnosing bleeding disorders and managing patients with specific factor deficiencies.

Prothrombin Time (PT)

  • Purpose: PT is primarily used to assess the extrinsic pathway of coagulation.
  • Factors Tested: It evaluates the function of factors I (fibrinogen), II (prothrombin), V, VII, and X.
  • Clinical Use: PT is commonly used to monitor patients on anticoagulant therapy (e.g., warfarin) and to assess bleeding risk before surgical procedures.

Partial Thromboplastin Time (PTT)

  • Purpose: PTT is used to assess the intrinsic pathway of coagulation.
  • Factors Tested: It evaluates the function of factors I (fibrinogen), II (prothrombin), V, VIII, IX, X, XI, and XII.
  • Clinical Use: PTT is often used to monitor patients on heparin therapy and to evaluate bleeding disorders.

Specific Factor Deficiencies

In certain bleeding disorders, specific factor deficiencies can lead to increased bleeding risk. Preoperative management may involve the administration of the respective clotting factors or antifibrinolytic agents to minimize bleeding during surgical procedures.

  1. Hemophilia A:

    • Deficiency: Factor VIII deficiency.
    • Management: Administration of factor VIII concentrate before surgery.
  2. Hemophilia B:

    • Deficiency: Factor IX deficiency.
    • Management: Administration of factor IX concentrate before surgery.
  3. Hemophilia C:

    • Deficiency: Factor XI deficiency.
    • Management: Administration of factor XI concentrate or fresh frozen plasma (FFP) may be considered.
  4. Von Willebrand’s Disease:

    • Deficiency: Deficiency or dysfunction of von Willebrand factor (vWF), which is important for platelet adhesion.
    • Management: Desmopressin (DDAVP) may be administered to increase vWF levels, or factor replacement therapy may be used.
  5. Antifibrinolytic Agent:

    • Aminocaproic Acid: This antifibrinolytic agent can be used to help stabilize clots and reduce bleeding during surgical procedures, particularly in patients with bleeding disorders.

Lateral Pharyngeal Space

The lateral pharyngeal space is an important anatomical area in the neck that plays a significant role in various clinical conditions, particularly infections. Here’s a detailed overview of its anatomy, divisions, clinical significance, and potential complications.

Anatomy

  • Shape and Location: The lateral pharyngeal space is a potential cone-shaped space or cleft.
    • Base: The base of the cone is located at the base of the skull.
    • Apex: The apex extends down to the greater horn of the hyoid bone.
  • Divisions: The space is divided into two compartments by the styloid process:
    • Anterior Compartment: Located in front of the styloid process.
    • Posterior Compartment: Located behind the styloid process.

Boundaries

  • Medial Boundary: The lateral wall of the pharynx.
  • Lateral Boundary: The medial surface of the mandible and the muscles of the neck.
  • Superior Boundary: The base of the skull.
  • Inferior Boundary: The greater horn of the hyoid bone.

Contents

The lateral pharyngeal space contains various important structures, including:

  • Muscles: The stylopharyngeus and the superior pharyngeal constrictor muscles.
  • Nerves: The glossopharyngeal nerve (CN IX) and the vagus nerve (CN X) may be present in this space.
  • Vessels: The internal carotid artery and the internal jugular vein are closely associated with this space, particularly within the carotid sheath.

Clinical Significance

  • Infection Risk: Infection in the lateral pharyngeal space can be extremely serious due to its proximity to vital structures, particularly the carotid sheath, which contains the internal carotid artery, internal jugular vein, and cranial nerves.

  • Potential Complications:

    • Spread of Infection: Infections can spread from the lateral pharyngeal space to other areas, including the mediastinum, leading to life-threatening conditions such as mediastinitis.
    • Airway Compromise: Swelling or abscess formation in this space can lead to airway obstruction, necessitating urgent medical intervention.
    • Vascular Complications: The close relationship with the carotid sheath means that infections can potentially involve the carotid artery or jugular vein, leading to complications such as thrombosis or carotid artery rupture.

Diagnosis and Management

  • Diagnosis:

    • Clinical examination may reveal signs of infection, such as fever, neck swelling, and difficulty swallowing.
    • Imaging studies, such as CT scans, are often used to assess the extent of infection and involvement of surrounding structures.
  • Management:

    • Antibiotics: Broad-spectrum intravenous antibiotics are typically initiated to manage the infection.
    • Surgical Intervention: In cases of abscess formation or significant swelling, surgical drainage may be necessary to relieve pressure and remove infected material.

Danger Space: Anatomy and Clinical Significance

The danger space is an anatomical potential space located between the alar fascia and the prevertebral fascia. Understanding this space is crucial in the context of infections and their potential spread within the neck and thoracic regions.

Anatomical Extent

  • Location: The danger space extends from the base of the skull down to the posterior mediastinum, reaching as far as the diaphragm. This extensive reach makes it a significant pathway for the spread of infections.

Pathway for Infection Spread

  • Oropharyngeal Infections: Infections originating in the oropharynx can spread to the danger space through the retropharyngeal space. The retropharyngeal space is a potential space located behind the pharynx and is clinically relevant in the context of infections, particularly in children.

  • Connection to the Posterior Mediastinum: The danger space is continuous with the posterior mediastinum, allowing for the potential spread of infections from the neck to the thoracic cavity.

Mechanism of Infection Spread

  • Retropharyngeal Space: The spread of infection from the retropharyngeal space to the danger space typically occurs at the junction where the alar fascia and visceral fascia fuse, particularly between the cervical vertebrae C6 and T4.

  • Rupture of Alar Fascia: Infection can spread by rupturing through the alar fascia, which can lead to serious complications, including mediastinitis, if the infection reaches the posterior mediastinum.

Clinical Implications

  • Infection Management: Awareness of the danger space is critical for healthcare providers when evaluating and managing infections of the head and neck. Prompt recognition and treatment of oropharyngeal infections are essential to prevent their spread to the danger space and beyond.

  • Surgical Considerations: Surgeons must be cautious during procedures involving the neck to avoid inadvertently introducing infections into the danger space or to recognize the potential for infection spread during surgical interventions.

Explore by Exams