NEET MDS Lessons
Oral and Maxillofacial Surgery
Guardsman Fracture (Parade Ground Fracture)
Definition: The Guardsman fracture, also known as the parade ground fracture, is characterized by a combination of symphyseal and bilateral condylar fractures of the mandible. This type of fracture is often associated with specific mechanisms of injury, such as direct trauma or falls.
-
Fracture Components:
- Symphyseal Fracture: Involves the midline of the mandible where the two halves meet.
- Bilateral Condylar Fractures: Involves fractures of both condyles, which are the rounded ends of the mandible that articulate with the temporal bone of the skull.
-
Mechanism of Injury:
- Guardsman fractures typically occur due to significant trauma, such as a fall or blunt force impact, which can lead to simultaneous fractures in these areas.
-
Clinical Implications:
- Inadequate Fixation: If the fixation of the
symphyseal fracture is inadequate, it can lead to complications such as:
- Splaying of the Cortex: The fracture fragments may open on the lingual side, leading to a widening of the fracture site.
- Increased Interangular Distance: The splaying effect increases the distance between the angles of the mandible, which can affect occlusion and jaw function.
- Inadequate Fixation: If the fixation of the
symphyseal fracture is inadequate, it can lead to complications such as:
-
Symptoms:
- Patients may present with pain, swelling, malocclusion, and difficulty in jaw movement. There may also be visible deformity or asymmetry in the jaw.
-
Management:
- Surgical Intervention: Proper fixation of both the symphyseal and condylar fractures is crucial. This may involve the use of plates and screws to stabilize the fractures and restore normal anatomy.
Cryosurgery
Cryosurgery is a medical technique that utilizes extreme rapid cooling to freeze and destroy tissues. This method is particularly effective for treating various conditions, including malignancies, vascular tumors, and aggressive tumors such as ameloblastoma. The process involves applying very low temperatures to induce localized tissue destruction while minimizing damage to surrounding healthy tissues.
Mechanism of Action
The effects of rapid freezing on tissues include:
-
Reduction of Intracellular Water:
- Rapid cooling causes water within the cells to freeze, leading to a decrease in intracellular water content.
-
Cellular and Cell Membrane Shrinkage:
- The freezing process results in the shrinkage of cells and their membranes, contributing to cellular damage.
-
Increased Concentrations of Intracellular Solutes:
- As water is removed from the cells, the concentration of solutes (such as proteins and electrolytes) increases, which can disrupt cellular function.
-
Formation of Ice Crystals:
- Both intracellular and extracellular ice crystals form during the freezing process. The formation of these crystals can puncture cell membranes and disrupt cellular integrity, leading to cell death.
Cryosurgery Apparatus
The equipment used in cryosurgery typically includes:
-
Storage Bottles for Pressurized Liquid Gases:
- Liquid Nitrogen: Provides extremely low temperatures of approximately -196°C, making it highly effective for cryosurgery.
- Liquid Carbon Dioxide or Nitrous Oxide: These gases provide temperatures ranging from -20°C to -90°C, which can also be used for various applications.
-
Pressure and Temperature Gauge:
- This gauge is essential for monitoring the pressure and temperature of the cryogenic gases to ensure safe and effective application.
-
Probe with Tubing:
- A specialized probe is used to direct the pressurized gas to the targeted tissues, allowing for precise application of the freezing effect.
Treatment Parameters
- Time and Temperature: The specific time and temperature used during cryosurgery depend on the depth and extent of the tumor being treated. The clinician must carefully assess these factors to achieve optimal results while minimizing damage to surrounding healthy tissues.
Applications
Cryosurgery is applied in the treatment of various conditions, including:
- Malignancies: Used to destroy cancerous tissues in various organs.
- Vascular Tumors: Effective in treating tumors that have a significant blood supply.
- Aggressive Tumors: Such as ameloblastoma, where rapid and effective tissue destruction is necessary.
Seddon’s Classification of Nerve Injuries
-
Neuropraxia:
- Definition: This is the mildest form of nerve injury, often caused by compression or mild trauma.
- Sunderland Classification: Type I (10).
- Nerve Sheath: Intact; the surrounding connective tissue remains undamaged.
- Axons: Intact; the nerve fibers are not severed.
- Wallerian Degeneration: None; there is no degeneration of the distal nerve segment.
- Conduction Failure: Transitory; there may be temporary loss of function, but it is reversible.
- Spontaneous Recovery: Complete recovery is expected.
- Time of Recovery: Typically within 4 weeks.
-
Axonotmesis:
- Definition: This injury involves damage to the axons while the nerve sheath remains intact. It is often caused by more severe trauma, such as crush injuries.
- Sunderland Classification: Type II (20), Type III (30), Type IV (40).
- Nerve Sheath: Intact; the connective tissue framework is preserved.
- Axons: Interrupted; the nerve fibers are damaged but the sheath allows for potential regeneration.
- Wallerian Degeneration: Yes, partial; degeneration occurs in the distal segment of the nerve.
- Conduction Failure: Prolonged; there is a longer-lasting loss of function.
- Spontaneous Recovery: Partial recovery is possible, depending on the extent of the injury.
- Time of Recovery: Recovery may take months.
-
Neurotmesis:
- Definition: This is the most severe type of nerve injury, where both the axons and the nerve sheath are disrupted. It often results from lacerations or severe trauma.
- Sunderland Classification: Type V (50).
- Nerve Sheath: Interrupted; the connective tissue is damaged, complicating regeneration.
- Axons: Interrupted; the nerve fibers are completely severed.
- Wallerian Degeneration: Yes, complete; degeneration occurs in both the proximal and distal segments of the nerve.
- Conduction Failure: Permanent; there is a lasting loss of function.
- Spontaneous Recovery: Poor to none; recovery is unlikely without surgical intervention.
- Time of Recovery: Recovery may begin by 3 months, if at all.
Microvascular Trigeminal Decompression (The Jannetta Procedure)
Microvascular decompression (MVD), commonly known as the Jannetta procedure, is a surgical intervention designed to relieve the symptoms of classic trigeminal neuralgia by addressing the underlying vascular compression of the trigeminal nerve. This procedure is particularly effective for patients who have not responded to medical management or who experience significant side effects from medications.
Overview of the Procedure
-
Indication:
- MVD is indicated for patients with classic trigeminal neuralgia, characterized by recurrent episodes of severe facial pain, often triggered by light touch or specific activities.
-
Anesthesia:
- The procedure is performed under general anesthesia to ensure the patient is completely unconscious and pain-free during the surgery.
-
Surgical Approach:
- The surgery is conducted using an intraoperative microscope for enhanced visualization of the delicate structures involved.
- The arachnoid membrane surrounding the trigeminal nerve is carefully opened to access the nerve.
-
Exploration:
- The trigeminal nerve is explored from its entry point at the brainstem to the entrance of Meckel’s cave, where the trigeminal ganglion (Gasserian ganglion) is located.
-
Microdissection:
- Under microscopic and endoscopic visualization, the surgeon performs microdissection to identify and mobilize any arteries or veins that are compressing the trigeminal nerve.
- The most common offending vessel is a branch of the superior cerebellar artery, but venous compression or a combination of arterial and venous compression may also be present.
-
Decompression:
- Once the offending vessels are identified, they are decompressed.
This may involve:
- Cauterization and division of veins that are compressing the nerve.
- Placement of Teflon sponges between the dissected blood vessels and the trigeminal nerve to prevent further vascular compression.
- Once the offending vessels are identified, they are decompressed.
This may involve:
Outcomes and Efficacy
-
Immediate Pain Relief:
- Most patients experience immediate relief from facial pain following the decompression of the offending vessels.
- Reports indicate rates of immediate pain relief as high as 90% to 98% after the procedure.
-
Long-Term Relief:
- Many patients enjoy long-term relief from trigeminal neuralgia symptoms, although some may experience recurrence of pain over time.
-
Complications:
- As with any surgical procedure, there are potential risks and complications, including infection, cerebrospinal fluid leaks, and neurological deficits. However, MVD is generally considered safe and effective.
Lateral Pharyngeal Space
The lateral pharyngeal space is an important anatomical area in the neck that plays a significant role in various clinical conditions, particularly infections. Here’s a detailed overview of its anatomy, divisions, clinical significance, and potential complications.
Anatomy
- Shape and Location: The lateral pharyngeal space is a
potential cone-shaped space or cleft.
- Base: The base of the cone is located at the base of the skull.
- Apex: The apex extends down to the greater horn of the hyoid bone.
- Divisions: The space is divided into two compartments
by the styloid process:
- Anterior Compartment: Located in front of the styloid process.
- Posterior Compartment: Located behind the styloid process.
Boundaries
- Medial Boundary: The lateral wall of the pharynx.
- Lateral Boundary: The medial surface of the mandible and the muscles of the neck.
- Superior Boundary: The base of the skull.
- Inferior Boundary: The greater horn of the hyoid bone.
Contents
The lateral pharyngeal space contains various important structures, including:
- Muscles: The stylopharyngeus and the superior pharyngeal constrictor muscles.
- Nerves: The glossopharyngeal nerve (CN IX) and the vagus nerve (CN X) may be present in this space.
- Vessels: The internal carotid artery and the internal jugular vein are closely associated with this space, particularly within the carotid sheath.
Clinical Significance
-
Infection Risk: Infection in the lateral pharyngeal space can be extremely serious due to its proximity to vital structures, particularly the carotid sheath, which contains the internal carotid artery, internal jugular vein, and cranial nerves.
-
Potential Complications:
- Spread of Infection: Infections can spread from the lateral pharyngeal space to other areas, including the mediastinum, leading to life-threatening conditions such as mediastinitis.
- Airway Compromise: Swelling or abscess formation in this space can lead to airway obstruction, necessitating urgent medical intervention.
- Vascular Complications: The close relationship with the carotid sheath means that infections can potentially involve the carotid artery or jugular vein, leading to complications such as thrombosis or carotid artery rupture.
Diagnosis and Management
-
Diagnosis:
- Clinical examination may reveal signs of infection, such as fever, neck swelling, and difficulty swallowing.
- Imaging studies, such as CT scans, are often used to assess the extent of infection and involvement of surrounding structures.
-
Management:
- Antibiotics: Broad-spectrum intravenous antibiotics are typically initiated to manage the infection.
- Surgical Intervention: In cases of abscess formation or significant swelling, surgical drainage may be necessary to relieve pressure and remove infected material.
1. Radical Neck Dissection
- Complete removal of all ipsilateral
cervical lymph node groups (levels I-V) and three key non-lymphatic
structures:
- Internal jugular vein
- Sternocleidomastoid muscle
- Spinal accessory nerve
- Indication: Typically performed for extensive lymphatic involvement.
2. Modified Radical Neck Dissection
- Similar to radical neck dissection in terms
of lymph node removal (levels I-V) but with preservation of one or more of
the following structures:
- Type I: Preserves the spinal accessory nerve.
- Type II: Preserves the spinal accessory nerve and the sternocleidomastoid muscle.
- Type III: Preserves the spinal accessory nerve, sternocleidomastoid muscle, and internal jugular vein.
- Indication: Used when there is a need to reduce morbidity while still addressing lymphatic involvement.
3. Selective Neck Dissection
- Preservation of one or more lymph node groups that are typically removed in a radical neck dissection.
- Classification:
- Originally had named dissections (e.g., supraomohyoid neck dissection for levels I-III).
- The 2001 modification proposed naming dissections based on the cancer type and the specific node groups removed. For example, a selective neck dissection for oral cavity cancer might be referred to as a selective neck dissection (levels I-III).
- Indication: Used when there is a lower risk of lymphatic spread or when targeting specific areas.
4. Extended Neck Dissection
- Involves the removal of additional lymph
node groups or non-lymphatic structures beyond those included in a radical
neck dissection. This may include:
- Mediastinal nodes
- Non-lymphatic structures such as the carotid artery or hypoglossal nerve.
- Indication: Typically performed in cases of extensive disease or when there is a need to address additional areas of concern.
Overview of Infective Endocarditis (IE):
- Infective endocarditis is an inflammation of the inner lining of the heart, often caused by bacterial infection.
- Certain cardiac conditions increase the risk of developing IE, particularly during dental procedures that may introduce bacteria into the bloodstream.
High-Risk Cardiac Conditions: Antibiotic prophylaxis is recommended for patients with the following high-risk cardiac conditions:
- Prosthetic cardiac valves
- History of infective endocarditis
- Cyanotic congenital heart disease
- Surgically constructed systemic-pulmonary shunts
- Other congenital heart defects
- Acquired valvular dysfunction
- Hypertrophic cardiomyopathy
- Mitral valve prolapse with regurgitation
Moderate-Risk Cardiac Conditions:
- Mitral valve prolapse without regurgitation
- Previous rheumatic fever with valvular dysfunction
Negligible Risk Conditions:
- Coronary bypass grafts
- Physiological or functional heart murmurs
Prophylaxis Recommendations
When to Administer Prophylaxis:
- Prophylaxis is indicated for dental procedures that involve:
- Manipulation of gingival tissue
- Perforation of the oral mucosa
- Procedures that may cause bleeding
Antibiotic Regimens:
- The standard prophylactic regimen is a single dose administered 30-60
minutes before the procedure:
- Amoxicillin:
- Adult dose: 2 g orally
- Pediatric dose: 50 mg/kg orally (maximum 2 g)
- Ampicillin:
- Adult dose: 2 g IV/IM
- Pediatric dose: 50 mg/kg IV/IM (maximum 2 g)
- Clindamycin (for penicillin-allergic patients):
- Adult dose: 600 mg orally
- Pediatric dose: 20 mg/kg orally (maximum 600 mg)
- Cephalexin (for penicillin-allergic patients):
- Adult dose: 2 g orally
- Pediatric dose: 50 mg/kg orally (maximum 2 g)
- Amoxicillin: