Talk to us?

- NEETMDS- courses
Oral and Maxillofacial Surgery

Ridge Augmentation Procedures

Ridge augmentation procedures are surgical techniques used to increase the volume and density of the alveolar ridge in the maxilla and mandible. These procedures are often necessary to prepare the site for dental implants, especially in cases where there has been significant bone loss due to factors such as tooth extraction, periodontal disease, or trauma. Ridge augmentation can also be performed in conjunction with orthognathic surgery to enhance the overall facial structure and support dental rehabilitation.

Indications for Ridge Augmentation

  • Insufficient Bone Volume: To provide adequate support for dental implants.
  • Bone Resorption: Following tooth extraction or due to periodontal disease.
  • Facial Aesthetics: To improve the contour of the jaw and facial profile.
  • Orthognathic Surgery: To enhance the results of jaw repositioning procedures.

Types of Graft Materials Used

Ridge augmentation can be performed using various graft materials, which can be classified into the following categories:

  1. Autografts:

    • Bone harvested from the patient’s own body, typically from intraoral sites (e.g., chin, ramus) or extraoral sites (e.g., iliac crest).
    • Advantages: High biocompatibility, osteogenic potential, and lower risk of rejection or infection.
    • Disadvantages: Additional surgical site, potential for increased morbidity, and limited availability.
  2. Allografts:

    • Bone grafts obtained from a human donor (cadaveric bone) that have been processed and sterilized.
    • Advantages: No additional surgical site required, readily available, and can provide a scaffold for new bone growth.
    • Disadvantages: Risk of disease transmission and potential for immune response.
  3. Xenografts:

    •  Bone grafts derived from a different species, commonly bovine (cow) bone.
    • Advantages: Biocompatible and provides a scaffold for bone regeneration.
    • Disadvantages: Potential for immune response and slower resorption compared to autografts.
  4. Alloplasts:

    •  Synthetic materials used for bone augmentation, such as hydroxyapatite, calcium phosphate, or bioactive glass.
    • Advantages: No risk of disease transmission, customizable, and can be designed to promote bone growth.
    • Disadvantages: May not integrate as well as natural bone and can have variable resorption rates.

Surgical Techniques

  1. Bone Grafting:

    • The selected graft material is placed in the deficient area of the ridge to promote new bone formation. This can be done using various techniques, including:
      • Onlay Grafting: Graft material is placed on top of the existing ridge.
      • Inlay Grafting: Graft material is placed within the ridge.
  2. Guided Bone Regeneration (GBR):

    • A barrier membrane is placed over the graft material to prevent soft tissue infiltration and promote bone healing. This technique is often used in conjunction with grafting.
  3. Sinus Lift:

    • In the maxilla, a sinus lift procedure may be performed to augment the bone in the posterior maxilla by elevating the sinus membrane and placing graft material.
  4. Combination with Orthognathic Surgery:

    • Ridge augmentation can be performed simultaneously with orthognathic surgery to correct skeletal discrepancies and enhance the overall facial structure.

Dental/Oral/Upper Respiratory Tract Procedures: Antibiotic Prophylaxis Guidelines

Antibiotic prophylaxis is crucial for patients at risk of infective endocarditis or other infections during dental, oral, or upper respiratory tract procedures. The following guidelines outline the standard and alternate regimens for antibiotic prophylaxis based on the patient's allergy status and ability to take oral medications.

I. Standard Regimen in Patients at Risk

  1. For Patients Allergic to Penicillin/Ampicillin/Amoxicillin:

    • Erythromycin:
      • Dosage: Erythromycin ethyl-succinate 800 mg or erythromycin stearate 1.0 gm orally.
      • Timing: Administer 2 hours before the procedure.
      • Follow-up Dose: One-half of the original dose (400 mg or 500 mg) 6 hours after the initial administration.
    • Clindamycin:
      • Dosage: Clindamycin 300 mg orally.
      • Timing: Administer 1 hour before the procedure.
      • Follow-up Dose: 150 mg 6 hours after the initial dose.
  2. For Non-Allergic Patients:

    • Amoxicillin:
      • Dosage: Amoxicillin 3.0 gm orally.
      • Timing: Administer 1 hour before the procedure.
      • Follow-up Dose: 1.5 gm 6 hours after the initial dose.

II. Alternate Prophylactic Regimens in Patients at Risk

  1. For Patients Who Cannot Take Oral Medications:

    • For Penicillin/Amoxicillin Allergic Patients:
      • Clindamycin:
        • Dosage: Clindamycin 300 mg IV.
        • Timing: Administer 30 minutes before the procedure.
        • Follow-up Dose: 150 mg IV (or orally) 6 hours after the initial dose.
    • For Non-Allergic Patients:
      • Ampicillin:
        • Dosage: Ampicillin 2.0 gm IV or IM.
        • Timing: Administer 30 minutes before the procedure.
        • Follow-up Dose: Ampicillin 1.0 gm IV (or IM) or amoxicillin 1.5 gm orally 6 hours after the initial dose.
  2. For High-Risk Patients Who Are Not Candidates for the Standard Regimen:

    • For Penicillin/Amoxicillin Allergic Patients:
      • Vancomycin:
        • Dosage: Vancomycin 1.0 gm IV.
        • Timing: Administer over 1 hour, starting 1 hour before the procedure.
        • Follow-up Dose: No repeat dose is necessary.
    • For Non-Allergic Patients:
      • Ampicillin and Gentamicin:
        • Dosage: Ampicillin 2.0 gm IV (or IM) plus gentamicin 1.5 mg/kg IV (or IM) (not to exceed 80 mg).
        • Timing: Administer 30 minutes before the procedure.
        • Follow-up Dose: Amoxicillin 1.5 gm orally 6 hours after the initial dose. Alternatively, the parenteral regimen may be repeated 8 hours after the initial dose.

Management of Nasal Complex Fractures

Nasal complex fractures involve injuries to the nasal bones and surrounding structures, including the nasal septum, maxilla, and sometimes the orbits. Proper management is crucial to restore function and aesthetics.

Anesthesia Considerations

  • Local Anesthesia:
    • Nasal complex fractures can be reduced under local anesthesia, which may be sufficient for less complicated cases or when the patient is cooperative.
  • General Anesthesia:
    • For more complex fractures or when significant manipulation of the nasal structures is required, general anesthesia is preferred.
    • Per-oral Endotracheal Tube: This method allows for better airway management and control during the procedure.
    • Throat Pack: A throat pack is often used to minimize the risk of aspiration and to manage any potential hemorrhage, which can be profuse in these cases.

Surgical Technique

  1. Reduction of Fractures:

    • The primary goal is to realign the fractured nasal bones and restore the normal anatomy of the nasal complex.
    • Manipulation of Fragments:
      • Walsham’s Forceps: These are specialized instruments used to grasp and manipulate the nasal bone fragments during reduction.
      • Asche’s Forceps: Another type of forceps that can be used for similar purposes, allowing for precise control over the fractured segments.
  2. Post-Reduction Care:

    • After the reduction, the nasal structures may be stabilized using splints or packing to maintain alignment during the healing process.
    • Monitoring for complications such as bleeding, infection, or airway obstruction is essential.

Management of Mandibular Fractures: Plate Fixation Techniques

The management of mandibular fractures involves various techniques for fixation, depending on the type and location of the fracture. .

1. Plate Placement in the Body of the Mandible

  • Single Plate Fixation:

    • A single plate is recommended to be placed just below the apices of the teeth but above the inferior alveolar nerve canal. This positioning helps to avoid damage to the nerve while providing adequate support to the fracture site.
    • Miniplate Fixation: Effective for non-displaced or minimally displaced fractures, provided the fracture is not severely comminuted. The miniplate should be placed at the superior border of the mandible, acting as a tension band that prevents distraction at the superior border while maintaining compression at the inferior border during function.
  • Additional Plates:

    • While a solitary plate can provide adequate rigidity, the placement of an additional plate or the use of multi-armed plates (Y or H plates) can enhance stability, especially in more complex fractures.

2. Plate Placement in the Parasymphyseal and Symphyseal Regions

  • Two Plates for Stability:

    • In the parasymphyseal and symphyseal regions, two plates are recommended due to the torsional forces generated during function.
      • First Plate: Placed at the inferior aspect of the mandible.
      • Second Plate: Placed parallel and at least 5 mm superior to the first plate (subapical).
  • Plate Placement Behind the Mental Foramen:

    • A plate can be fixed in the subapical area and another near the lower border. Additionally, plates can be placed on the external oblique ridge or parallel to the lower border of the mandible.

3. Management of Comminuted or Grossly Displaced Fractures

  • Reconstruction Plates:
    • Comminuted or grossly displaced fractures of the mandibular body require fixation with a locking reconstruction plate or a standard reconstruction plate. These plates provide the necessary stability for complex fractures.

4. Management of Mandibular Angle Fractures

  • Miniplate Fixation:
    • When treating mandibular angle fractures, the plate should be placed at the superolateral aspect of the mandible, extending onto the broad surface of the external oblique ridge. This placement helps to counteract the forces acting on the angle of the mandible.

5. Stress Patterns and Plate Design

  • Stress Patterns:

    • The zone of compression is located at the superior border of the mandible, while the neutral axis is approximately at the level of the inferior alveolar canal. Understanding these stress patterns is crucial for optimal plate placement.
  • Miniplate Characteristics:

    • Developed by Michelet et al. and popularized by Champy et al., miniplates utilize monocortical screws and require a minimum of two screws in each osseous segment. They are smaller than standard plates, allowing for smaller incisions and less soft tissue dissection, which reduces the risk of complications.

6. Other Fixation Techniques

  • Compression Osteosynthesis:

    • Indicated for non-oblique fractures that demonstrate good body opposition after reduction. Compression plates, such as dynamic compression plates (DCP), are used to achieve this. The inclined plate within the hole allows for translation of the bone toward the fracture site as the screw is tightened.
  • Fixation Osteosynthesis:

    • For severely oblique fractures, comminuted fractures, and fractures with bone loss, compression plates are contraindicated. In these cases, non-compression osteosynthesis using locking plates or reconstruction plates is preferred. This method is also suitable for patients with questionable postoperative compliance or a non-stable mandible.

Cryosurgery

Cryosurgery is a medical technique that utilizes extreme rapid cooling to freeze and destroy tissues. This method is particularly effective for treating various conditions, including malignancies, vascular tumors, and aggressive tumors such as ameloblastoma. The process involves applying very low temperatures to induce localized tissue destruction while minimizing damage to surrounding healthy tissues.

Mechanism of Action

The effects of rapid freezing on tissues include:

  1. Reduction of Intracellular Water:

    • Rapid cooling causes water within the cells to freeze, leading to a decrease in intracellular water content.
  2. Cellular and Cell Membrane Shrinkage:

    • The freezing process results in the shrinkage of cells and their membranes, contributing to cellular damage.
  3. Increased Concentrations of Intracellular Solutes:

    • As water is removed from the cells, the concentration of solutes (such as proteins and electrolytes) increases, which can disrupt cellular function.
  4. Formation of Ice Crystals:

    • Both intracellular and extracellular ice crystals form during the freezing process. The formation of these crystals can puncture cell membranes and disrupt cellular integrity, leading to cell death.

Cryosurgery Apparatus

The equipment used in cryosurgery typically includes:

  1. Storage Bottles for Pressurized Liquid Gases:

    • Liquid Nitrogen: Provides extremely low temperatures of approximately -196°C, making it highly effective for cryosurgery.
    • Liquid Carbon Dioxide or Nitrous Oxide: These gases provide temperatures ranging from -20°C to -90°C, which can also be used for various applications.
  2. Pressure and Temperature Gauge:

    • This gauge is essential for monitoring the pressure and temperature of the cryogenic gases to ensure safe and effective application.
  3. Probe with Tubing:

    • A specialized probe is used to direct the pressurized gas to the targeted tissues, allowing for precise application of the freezing effect.

Treatment Parameters

  • Time and Temperature: The specific time and temperature used during cryosurgery depend on the depth and extent of the tumor being treated. The clinician must carefully assess these factors to achieve optimal results while minimizing damage to surrounding healthy tissues.

Applications

Cryosurgery is applied in the treatment of various conditions, including:

  • Malignancies: Used to destroy cancerous tissues in various organs.
  • Vascular Tumors: Effective in treating tumors that have a significant blood supply.
  • Aggressive Tumors: Such as ameloblastoma, where rapid and effective tissue destruction is necessary.

Champy Technique of Fracture Stabilization

The Champy technique, developed by Champy et al. in the mid-1970s, is a method of fracture stabilization that utilizes non-compression monocortical miniplates applied as tension bands. This technique is particularly relevant in the context of mandibular fractures and is based on biomechanical principles that optimize the stability and healing of the bone.

Key Principles of the Champy Technique

  1. Biomechanical Considerations:

    • Tensile and Compressive Stresses: Biomechanical studies have shown that tensile stresses occur in the upper border of the mandible, while compressive stresses are found in the lower border. This understanding is crucial for the placement of plates.
    • Bending and Torsional Forces: The forces acting on the mandible primarily produce bending movements. In the symphysis and parasymphysis regions, torsional forces are more significant than bending moments.
  2. Ideal Osteosynthesis Line:

    • Champy et al. established the "ideal osteosynthesis line" at the base of the alveolar process. This line is critical for the effective placement of plates to ensure stability during the healing process.
    • Plate Placement:
      • Anterior Region: In the area between the mental foramina, a subapical plate is placed, and an additional plate is positioned near the lower border of the mandible to counteract torsional forces.
      • Posterior Region: Behind the mental foramen, the plate is applied just below the dental roots and above the inferior alveolar nerve.
      • Angle of Mandible: The plate is placed on the broad surface of the external oblique ridge.
  3. Tension Band Principle:

    • The use of miniplates as tension bands allows for the distribution of forces across the fracture site, enhancing stability and promoting healing.

Treatment Steps

  1. Reduction:

    • The first step in fracture treatment is the accurate reduction of the fracture fragments to restore normal anatomy.
  2. Stabilization:

    • Following reduction, stabilization is achieved using the Champy technique, which involves the application of miniplates in accordance with the biomechanical principles outlined above.
  3. Maxillomandibular Fixation (MMF):

    • MMF is often used as a standard method for both reduction and stabilization, particularly in cases where additional support is needed.
  4. External Fixation:

    • In cases of atrophic edentulous mandibular fractures, extensive soft tissue injuries, severe communication, or infected fractures, external fixation may be considered.

Classification of Internal Fixation Techniques

  • Absolute Stability:

    • Rigid internal fixation methods, such as compression plates, lag screws, and the tension band principle, fall under this category. These techniques provide strong stabilization but may compromise blood supply to the bone.
  • Relative Stability:

    • Techniques such as bridging, biologic (flexible) fixation, and the Champy technique are classified as relative stability methods. These techniques allow for some movement at the fracture site, which can promote healing by maintaining blood supply to the cortical bone.

Biologic Fixation

  • New Paradigm:
    • Biologic fixation represents a shift in fracture treatment philosophy, emphasizing that absolute stability is not always beneficial. Allowing for some movement at the fracture site can enhance blood supply and promote healing.
  • Improved Blood Supply:
    • Not pressing the plate against the bone helps maintain blood supply to the cortical bone and prevents the formation of early temporary porosity, which can be detrimental to healing.

Classification and Management of Impacted Third Molars

Impacted third molars, commonly known as wisdom teeth, can present in various orientations and depths, influencing the difficulty of their extraction. Understanding the types of impactions and their classifications is crucial for planning surgical intervention.

Types of Impaction

  1. Mesioangular Impaction:

    • Description: The tooth is tilted toward the second molar in a mesial direction.
    • Prevalence: Comprises approximately 43% of all impacted teeth.
    • Difficulty: Generally acknowledged as the least difficult type of impaction to remove.
  2. Vertical Impaction:

    • Description: The tooth is positioned vertically, with the crown facing upward.
    • Prevalence: Accounts for about 38% of impacted teeth.
    • Difficulty: Moderate difficulty in removal.
  3. Distoangular Impaction:

    • Description: The tooth is tilted away from the second molar in a distal direction.
    • Prevalence: Comprises approximately 6% of impacted teeth.
    • Difficulty: Considered the most difficult type of impaction to remove due to the withdrawal pathway running into the mandibular ramus.
  4. Horizontal Impaction:

    • Description: The tooth is positioned horizontally, with the crown facing the buccal or lingual side.
    • Prevalence: Accounts for about 3% of impacted teeth.
    • Difficulty: More difficult than mesioangular but less difficult than distoangular.

Decreasing Level of Difficulty for Types of Impaction

  • Order of Difficulty:
    • Distoangular > Horizontal > Vertical > Mesioangular

Pell and Gregory Classification

The Pell and Gregory classification system categorizes impacted teeth based on their relationship to the mandibular ramus and the occlusal plane. This classification helps assess the difficulty of extraction.

Classification Based on Coverage by the Mandibular Ramus

  1. Class 1:

    • Description: Mesiodistal diameter of the crown is completely anterior to the anterior border of the mandibular ramus.
    • Difficulty: Easiest to remove.
  2. Class 2:

    • Description: Approximately one-half of the tooth is covered by the ramus.
    • Difficulty: Moderate difficulty.
  3. Class 3:

    • Description: The tooth is completely within the mandibular ramus.
    • Difficulty: Most difficult to remove.

Decreasing Level of Difficulty for Ramus Coverage

  • Order of Difficulty:
    • Class 3 > Class 2 > Class 1

Pell and Gregory Classification Based on Relationship to Occlusal Plane

This classification assesses the depth of the impacted tooth relative to the occlusal plane of the second molar.

  1. Class A:

    • Description: The occlusal surface of the impacted tooth is level or nearly level with the occlusal plane of the second molar.
    • Difficulty: Easiest to remove.
  2. Class B:

    • Description: The occlusal surface lies between the occlusal plane and the cervical line of the second molar.
    • Difficulty: Moderate difficulty.
  3. Class C:

    • Description: The occlusal surface is below the cervical line of the second molars.
    • Difficulty: Most difficult to remove.

Decreasing Level of Difficulty for Occlusal Plane Relationship

  • Order of Difficulty:
    • Class C > Class B > Class A

Summary of Extraction Difficulty

  • Most Difficult Impaction:
    • Distoangular impaction with Class 3 ramus coverage and Class C depth.
  • Easiest Impaction:
    • Mesioangular impaction with Class 1 ramus coverage and Class A dep

Explore by Exams