Talk to us?

- NEETMDS- courses
Oral and Maxillofacial Surgery

Rigid Fixation

Rigid fixation is a surgical technique used to stabilize fractured bones.

Types of Rigid Fixation

Rigid fixation can be achieved using various types of plates and devices, including:

  1. Simple Non-Compression Bone Plates:

    • These plates provide stability without applying compressive forces across the fracture site.
  2. Mini Bone Plates:

    • Smaller plates designed for use in areas where space is limited, providing adequate stabilization for smaller fractures.
  3. Compression Plates:

    • These plates apply compressive forces across the fracture site, promoting bone healing by encouraging contact between the fracture fragments.
  4. Reconstruction Plates:

    • Used for complex fractures or reconstructions, these plates can be contoured to fit the specific anatomy of the fractured bone.

Transosseous Wiring (Intraosseous Wiring)

Transosseous wiring is a traditional and effective method for the fixation of jaw bone fractures. It involves the following steps:

  1. Technique:

    • Holes are drilled in the bony fragments on either side of the fracture line.
    • A length of 26-gauge stainless steel wire is passed through the holes and across the fracture.
  2. Reduction:

    • The fracture must be reduced independently, ensuring that the teeth are in occlusion before securing the wire.
  3. Twisting the Wire:

    • After achieving proper alignment, the free ends of the wire are twisted to secure the fracture.
    • The twisted ends are cut short and tucked into the nearest drill hole to prevent irritation to surrounding tissues.
  4. Variations:

    • The single strand wire fixation in a horizontal manner is the simplest form of intraosseous wiring, but it can be modified in various ways depending on the specific needs of the fracture and the patient.

Other fixation techniques

Open reduction and internal fixation (ORIF):
Surgical exposure of the fracture site, followed by reduction and fixation with plates, screws, or nails

Closed reduction and immobilization (CRII):
Manipulation of the bone fragments into alignment without surgical exposure, followed by cast or splint immobilization

Intramedullary nailing:
Insertion of a metal rod (nail) into the medullary canal of the bone to stabilize long bone fractures

External fixation:
A device with pins inserted through the bone fragments and connected to an external frame to provide stability
 
Tension band wiring:
A technique using wires to apply tension across a fracture site, particularly useful for avulsion fractures

 

 

--------------------------------

Augmentation of the Inferior Border of the Mandible

Mandibular augmentation refers to surgical procedures aimed at increasing the height or contour of the mandible, particularly the inferior border. This type of augmentation is often performed to improve the support for dentures, enhance facial aesthetics, or correct deformities. Below is an overview of the advantages and disadvantages of augmenting the inferior border of the mandible.

Advantages of Inferior Border Augmentation

  1. Preservation of the Vestibule:

    • The procedure does not obliterate the vestibule, allowing for the immediate placement of an interim denture. This is particularly beneficial for patients who require prosthetic support soon after surgery.
  2. No Change in Vertical Dimension:

    • Augmentation of the inferior border does not alter the vertical dimension of the occlusion, which is crucial for maintaining proper bite relationships and avoiding complications associated with changes in jaw alignment.
  3. Facilitation of Secondary Vestibuloplasty:

    • The procedure makes subsequent vestibuloplasty easier. By maintaining the vestibular space, it allows for better access and manipulation during any future surgical interventions aimed at deepening the vestibule.
  4. Protection of the Graft:

    • The graft used for augmentation is not subjected to direct masticatory forces, reducing the risk of graft failure and promoting better healing. This is particularly important in ensuring the longevity and stability of the augmentation.

Disadvantages of Inferior Border Augmentation

  1. Extraoral Scar:

    • The procedure typically involves an incision that can result in an extraoral scar. This may be a cosmetic concern for some patients, especially if the scar is prominent or does not heal well.
  2. Potential Alteration of Facial Appearance:

    • If the submental and submandibular tissues are not initially loose, there is a risk of altering the facial appearance. Tight or inelastic tissues may lead to distortion or asymmetry postoperatively.
  3. Limited Change in Superior Surface Shape:

    • The augmentation primarily affects the inferior border of the mandible and may not significantly change the shape of the superior surface of the mandible. This limitation can affect the overall contour and aesthetics of the jawline.
  4. Surgical Risks:

    • As with any surgical procedure, there are inherent risks, including infection, bleeding, and complications related to anesthesia. Additionally, there may be risks associated with the grafting material used.

Hemostatic Agents

Hemostatic agents are critical in surgical procedures to control bleeding and promote wound healing. Various materials are used, each with unique properties and mechanisms of action. Below is a detailed overview of some commonly used hemostatic agents, including Gelfoam, Oxycel, Surgical (Oxycellulose), and Fibrin Glue.

1. Gelfoam

  • Composition: Gelfoam is made from gelatin and has a sponge-like structure.

  • Mechanism of Action:

    • Gelfoam does not have intrinsic hemostatic properties; its hemostatic effect is primarily due to its large surface area, which comes into contact with blood.
    • When Gelfoam absorbs blood, it swells and exerts pressure on the bleeding site, providing a scaffold for the formation of a fibrin network.
  • Application:

    • Gelfoam should be moistened in saline or thrombin solution before application to ensure optimal performance. It is essential to remove all air from the interstices to maximize its effectiveness.
  • Absorption: Gelfoam is absorbed by the body through phagocytosis, typically within a few weeks.

2. Oxycel

  • Composition: Oxycel is made from oxidized cellulose.

  • Mechanism of Action:

    • Upon application, Oxycel releases cellulosic acid, which has a strong affinity for hemoglobin, leading to the formation of an artificial clot.
    • The acid produced during the wetting process can inactivate thrombin and other hemostatic agents, which is why Oxycel should be applied dry.
  • Limitations:

    • The acid produced can inhibit epithelialization, making Oxycel unsuitable for use over epithelial surfaces.

3. Surgical (Oxycellulose)

  • Composition: Surgical is a glucose polymer-based sterile knitted fabric created through the controlled oxidation of regenerated cellulose.

  • Mechanism of Action:

    • The local hemostatic mechanism relies on the binding of hemoglobin to oxycellulose, allowing the dressing to expand into a gelatinous mass. This mass acts as a scaffold for clot formation and stabilization.
  • Application:

    • Surgical can be applied dry or soaked in thrombin solution, providing flexibility in its use.
  • Absorption: It is removed by liquefaction and phagocytosis over a period of one week to one month. Unlike Oxycel, Surgical does not inhibit epithelialization and can be used over epithelial surfaces.

4. Fibrin Glue

  • Composition: Fibrin glue is a biological adhesive that contains thrombin, fibrinogen, factor XIII, and aprotinin.

  • Mechanism of Action:

    • Thrombin converts fibrinogen into an unstable fibrin clot, while factor XIII stabilizes the clot. Aprotinin prevents the degradation of the clot.
    • During wound healing, fibroblasts migrate through the fibrin meshwork, forming a more permanent framework composed of collagen fibers.
  • Applications:

    • Fibrin glue is used in various surgical procedures to promote hemostasis and facilitate tissue adhesion. It is particularly useful in areas where traditional sutures may be challenging to apply.

Fluid Resuscitation in Emergency Care

Fluid resuscitation is a critical component of managing patients in shock, particularly in cases of hypovolemic shock due to trauma, hemorrhage, or severe dehydration. The goal of fluid resuscitation is to restore intravascular volume, improve tissue perfusion, and stabilize vital signs. Below is an overview of the principles and protocols for fluid resuscitation.

Initial Fluid Resuscitation

  1. Bolus Administration:

    • Adults: Initiate fluid resuscitation with a 1000 mL bolus of Ringer's Lactate (RL) or normal saline.
    • Children: Administer a 20 mL/kg bolus of RL or normal saline, recognizing that children may require more careful dosing based on their size and clinical condition.
  2. Monitoring Response:

    • After the initial bolus, monitor the patient’s response to therapy using clinical indicators, including:
      • Blood Pressure: Assess for improvements in systolic and diastolic blood pressure.
      • Skin Perfusion: Evaluate capillary refill time, skin temperature, and color.
      • Urinary Output: Monitor urine output as an indicator of renal perfusion; a urine output of at least 0.5 mL/kg/hour is generally considered adequate.
      • Mental Status: Observe for changes in consciousness, alertness, and overall mental status.

Further Resuscitation Steps

  1. Second Bolus:

    • If there is no transient response to the initial bolus (i.e., no improvement in blood pressure, skin perfusion, urinary output, or mental status), administer a second bolus of fluid (1000 mL for adults or 20 mL/kg for children).
  2. Assessment of Ongoing Needs:

    • If ongoing resuscitation is required after two boluses, it is likely that the patient may need transfusion of blood products. This is particularly true in cases of significant hemorrhage or when there is evidence of inadequate perfusion despite adequate fluid resuscitation.
  3. Transfusion Considerations:

    • Indications for Transfusion: Consider transfusion if the patient exhibits signs of severe anemia, persistent hypotension, or ongoing blood loss.
    • Type of Transfusion: Depending on the clinical scenario, packed red blood cells (PRBCs), fresh frozen plasma (FFP), or platelets may be indicated.

Trigeminal Neuralgia

Trigeminal neuralgia (TN) is a type of orofacial neuralgia characterized by severe, paroxysmal pain that follows the anatomical distribution of the trigeminal nerve (cranial nerve V). It is often described as one of the most painful conditions known, and understanding its features, triggers, and patterns is essential for effective management.

Features of Trigeminal Neuralgia

  1. Anatomical Distribution:

    • Trigeminal neuralgia follows the distribution of the trigeminal nerve, which has three main branches:
      • V1 (Ophthalmic): Supplies sensation to the forehead, upper eyelid, and parts of the nose.
      • V2 (Maxillary): Supplies sensation to the cheeks, upper lip, and upper teeth.
      • V3 (Mandibular): Supplies sensation to the lower lip, chin, and lower teeth.
    • Pain can occur in one or more of these dermatomes, but it is typically unilateral.
  2. Trigger Zones:

    • Patients with trigeminal neuralgia often have specific trigger zones on the face. These are areas where light touch, brushing, or even wind can provoke an episode of pain.
    • Stimulation of these trigger zones can initiate a paroxysm of pain, leading to sudden and intense discomfort.
  3. Pain Characteristics:

    • The pain associated with trigeminal neuralgia is described as:
      • Paroxysmal: Occurs in sudden bursts or attacks.
      • Excruciating: The pain is often severe and debilitating.
      • Sharp, shooting, or lancinating: Patients may describe the pain as electric shock-like.
      • Unilateral: Pain typically affects one side of the face.
      • Intermittent: Attacks can vary in frequency and duration.
  4. Latency and Refractory Period:

    • Latency: This refers to the short time interval between the stimulation of the trigger area and the onset of pain. It can vary among patients.
    • Refractory Period: After an attack, there may be a refractory period during which further stimulation does not elicit pain. This period can vary in length and is an important aspect of the pain cycle.
  5. Pain Cycles:

    • Paroxysms of pain often occur in cycles, with each cycle lasting for weeks or months. Over time, these cycles may become more frequent, and the intensity of pain can increase with each attack.
    • Patients may experience a progressive worsening of symptoms, leading to more frequent and severe episodes.
  6. Psychosocial Impact:

    • The unpredictable nature of trigeminal neuralgia can significantly impact a patient's quality of life, leading to anxiety, depression, and social withdrawal due to fear of triggering an attack.

Management of Trigeminal Neuralgia

  1. Medications:

    • Anticonvulsants: Medications such as carbamazepine and oxcarbazepine are commonly used as first-line treatments to help control pain.
    • Other Medications: Gabapentin, pregabalin, and baclofen may also be effective in managing symptoms.
  2. Surgical Options:

    • For patients who do not respond to medication or experience intolerable side effects, surgical options may be considered. These can include:
      • Microvascular Decompression: A surgical procedure that relieves pressure on the trigeminal nerve.
      • Rhizotomy: A procedure that selectively destroys nerve fibers to reduce pain.
  3. Alternative Therapies:

    • Some patients may benefit from complementary therapies such as acupuncture, physical therapy, or biofeedback.

Osteogenesis in Oral Surgery

Osteogenesis refers to the process of bone formation, which is crucial in various aspects of oral and maxillofacial surgery. This process is particularly important in procedures such as dental implant placement, bone grafting, and the treatment of bone defects or deformities.

Mechanisms of Osteogenesis

Osteogenesis occurs through two primary processes:

  1. Intramembranous Ossification:

    • This process involves the direct formation of bone from mesenchymal tissue without a cartilage intermediate. It is primarily responsible for the formation of flat bones, such as the bones of the skull and the mandible.
    • Steps:
      • Mesenchymal cells differentiate into osteoblasts (bone-forming cells).
      • Osteoblasts secrete osteoid, which is the unmineralized bone matrix.
      • The osteoid becomes mineralized, leading to the formation of bone.
      • As osteoblasts become trapped in the matrix, they differentiate into osteocytes (mature bone cells).
  2. Endochondral Ossification:

    • This process involves the formation of bone from a cartilage model. It is responsible for the development of long bones and the growth of bones in length.
    • Steps:
      • Mesenchymal cells differentiate into chondrocytes (cartilage cells) to form a cartilage model.
      • The cartilage model undergoes hypertrophy and calcification.
      • Blood vessels invade the calcified cartilage, bringing osteoblasts that replace the cartilage with bone.
      • This process continues until the cartilage is fully replaced by bone.

Types of Osteogenesis in Oral Surgery

In the context of oral surgery, osteogenesis can be classified into several types based on the source of the bone and the method of bone formation:

  1. Autogenous Osteogenesis:

    • Definition: Bone formation that occurs from the patient’s own bone grafts.
    • Source: Bone is harvested from a donor site in the same patient (e.g., the iliac crest, chin, or ramus of the mandible).
    • Advantages:
      • High biocompatibility and low risk of rejection.
      • Contains living cells and growth factors that promote healing and bone formation.
    • Applications: Commonly used in bone grafting procedures, such as sinus lifts, ridge augmentation, and implant placement.
  2. Allogeneic Osteogenesis:

    • Definition: Bone formation that occurs from bone grafts taken from a different individual (cadaveric bone).
    • Source: Bone is obtained from a bone bank, where it is processed and sterilized.
    • Advantages:
      • Reduces the need for a second surgical site for harvesting bone.
      • Can provide a larger volume of bone compared to autogenous grafts.
    • Applications: Used in cases where significant bone volume is required, such as large defects or reconstructions.
  3. Xenogeneic Osteogenesis:

    • Definition: Bone formation that occurs from bone grafts taken from a different species (e.g., bovine or porcine bone).
    • Source: Processed animal bone is used as a graft material.
    • Advantages:
      • Readily available and can provide a scaffold for new bone formation.
      • Often used in combination with autogenous bone to enhance healing.
    • Applications: Commonly used in dental implant procedures and bone augmentation.
  4. Synthetic Osteogenesis:

    • Definition: Bone formation that occurs from synthetic materials designed to mimic natural bone.
    • Source: Materials such as hydroxyapatite, calcium phosphate, or bioactive glass.
    • Advantages:
      • No risk of disease transmission or rejection.
      • Can be engineered to have specific properties that promote bone growth.
    • Applications: Used in various bone grafting procedures, particularly in cases where autogenous or allogeneic grafts are not feasible.

Factors Influencing Osteogenesis

Several factors can influence the process of osteogenesis in oral surgery:

  1. Biological Factors:

    • Growth Factors: Proteins such as bone morphogenetic proteins (BMPs) play a crucial role in promoting osteogenesis.
    • Cellular Activity: The presence of osteoblasts, osteoclasts, and mesenchymal stem cells is essential for bone formation and remodeling.
  2. Mechanical Factors:

    • Stability: The stability of the graft site is critical for successful osteogenesis. Rigid fixation can enhance bone healing.
    • Loading: Mechanical loading can stimulate bone formation and remodeling.
  3. Environmental Factors:

    • Oxygen Supply: Adequate blood supply is essential for delivering nutrients and oxygen to the bone healing site.
    • pH and Temperature: The local environment can affect cellular activity and the healing process.

Characteristics of Middle-Third Facial Fractures

Middle-third facial fractures, often referred to as "midfacial fractures," involve the central portion of the face, including the nasal bones, maxilla, and zygomatic arch. These fractures can result from various types of trauma, such as motor vehicle accidents, falls, or physical assaults. The following points highlight the key features and clinical implications of middle-third facial fractures:

1. Oedema of the Middle Third of the Face

  • Rapid Development: Oedema (swelling) in the middle third of the face develops quickly after the injury, leading to a characteristic "balloon" appearance. This swelling is due to the accumulation of fluid in the soft tissues of the face.

  • Absence of Deep Cervical Fascia: The unique anatomical structure of the middle third of the face contributes to this swelling. The absence of deep cervical fascia in this region allows for the rapid spread of fluid, resulting in pronounced oedema.

  • Clinical Presentation: In the early stages following injury, patients with middle-third fractures often present with similar facial appearances due to the characteristic swelling. This can make diagnosis based solely on visual inspection challenging.

2. Lengthening of the Face

  • Displacement of the Middle Third: The downward and backward displacement of the middle third of the facial skeleton can lead to an increase in the overall length of the face. This displacement forces the mandible to open, which can result in a change in occlusion, particularly in the molar region.

  • Gagging of Occlusion: The altered position of the mandible can lead to a malocclusion, where the upper and lower teeth do not align properly. This can cause discomfort and difficulty in chewing or speaking.

  • Delayed Recognition of Lengthening: The true increase in facial length may not be fully appreciated until the initial oedema subsides. As the swelling decreases, the changes in facial structure become more apparent.

3. Nasal Obstruction

  • Blood Clots in the Nares: Following a middle-third fracture, the nares (nostrils) may become obstructed by blood clots, leading to nasal congestion. This can significantly impact the patient's ability to breathe through the nose.

  • Mouth Breathing: Due to the obstruction, patients are often forced to breathe through their mouths, which can lead to additional complications, such as dry mouth and increased risk of respiratory infections.

Explore by Exams