Talk to us?

Oral and Maxillofacial Surgery - NEETMDS- courses
Oral and Maxillofacial Surgery

Hematoma

hematoma is a localized collection of blood outside of blood vessels, typically due to a rupture of blood vessels. It can occur in various tissues and organs and is often associated with trauma, surgery, or certain medical conditions. Understanding the types, causes, symptoms, diagnosis, and treatment of hematomas is essential for effective management.

Types of Hematomas

  1. Subcutaneous Hematoma:

    • Located just beneath the skin.
    • Commonly seen after blunt trauma, resulting in a bruise-like appearance.
  2. Intramuscular Hematoma:

    • Occurs within a muscle.
    • Can cause pain, swelling, and limited range of motion in the affected muscle.
  3. Periosteal Hematoma:

    • Forms between the periosteum (the outer fibrous layer covering bones) and the bone itself.
    • Often associated with fractures.
  4. Hematoma in Body Cavities:

    • Intracranial Hematoma: Blood accumulation within the skull, which can be further classified into:
      • Epidural Hematoma: Blood between the skull and the dura mater (the outermost layer of the meninges).
      • Subdural Hematoma: Blood between the dura mater and the brain.
      • Intracerebral Hematoma: Blood within the brain tissue itself.
    • Hematoma in the Abdomen: Can occur in organs such as the liver or spleen, often due to trauma.
  5. Other Types:

    • Chronic Hematoma: A hematoma that persists for an extended period, often leading to fibrosis and encapsulation.
    • Hematoma in the Ear (Auricular Hematoma): Common in wrestlers and boxers, resulting from trauma to the ear.

Causes of Hematomas

  • Trauma: The most common cause, including falls, sports injuries, and accidents.
  • Surgical Procedures: Postoperative hematomas can occur at surgical sites.
  • Blood Disorders: Conditions such as hemophilia or thrombocytopenia can predispose individuals to hematoma formation.
  • Medications: Anticoagulants (e.g., warfarin, aspirin) can increase the risk of bleeding and hematoma formation.
  • Vascular Malformations: Abnormal blood vessel formations can lead to hematomas.

Symptoms of Hematomas

  • Pain: Localized pain at the site of the hematoma, which may vary in intensity.
  • Swelling: The area may appear swollen and may feel firm or tense.
  • Discoloration: Skin overlying the hematoma may show discoloration (e.g., bruising).
  • Limited Function: Depending on the location, a hematoma can restrict movement or function of the affected area (e.g., in muscles or joints).
  • Neurological Symptoms: In cases of intracranial hematomas, symptoms may include headache, confusion, dizziness, or loss of consciousness.

Diagnosis of Hematomas

  • Physical Examination: Assessment of the affected area for swelling, tenderness, and discoloration.
  • Imaging Studies:
    • Ultrasound: Useful for evaluating soft tissue hematomas, especially in children.
    • CT Scan: Commonly used for detecting intracranial hematomas and assessing their size and impact on surrounding structures.
    • MRI: Helpful in evaluating deeper hematomas and those in complex anatomical areas.

Treatment of Hematomas

  1. Conservative Management:

    • Rest: Avoiding activities that may exacerbate the hematoma.
    • Ice Application: Applying ice packs to reduce swelling and pain.
    • Compression: Using bandages to compress the area and minimize swelling.
    • Elevation: Keeping the affected area elevated to reduce swelling.
  2. Medications:

    • Pain Relief: Nonsteroidal anti-inflammatory drugs (NSAIDs) or acetaminophen for pain management.
    • Anticoagulant Management: Adjusting anticoagulant therapy if the hematoma is related to blood-thinning medications.
  3. Surgical Intervention:

    • Drainage: Surgical drainage may be necessary for large or symptomatic hematomas, especially in cases of significant swelling or pressure on surrounding structures.
    • Evacuation: In cases of intracranial hematomas, surgical evacuation may be required to relieve pressure on the brain.
  4. Monitoring:

    • Regular follow-up to assess the resolution of the hematoma and monitor for any complications.

Condylar Fractures

Condylar fractures are a significant type of mandibular fracture, accounting for a notable percentage of all mandibular injuries. Understanding their characteristics, associated injuries, and implications for treatment is essential for effective management. Below is a detailed overview of condylar fractures.

1. Prevalence and Associated Injuries

  • Incidence: Condylar fractures account for 26-57% of all mandibular fractures.
  • Associated Fractures: Approximately 48-66% of patients with a condylar fracture will also have a fracture of the body or angle of the mandible.
  • Unilateral Fractures: Unilateral fractures of the condyle occur 84% of the time.

2. Types of Condylar Fractures

  • Subcondylar Fractures: Approximately 62% of condylar fractures are classified as subcondylar.
  • Condylar Neck Fractures: About 24% are neck fractures.
  • Intracapsular Fractures: Approximately 14% are intracapsular.
  • Severe Displacement: About 16% of condylar fractures are associated with severe displacement.

3. Mechanism of Injury

  • Bilateral Fractures: Symmetrical impacts can cause bilateral fractures, with contralateral fractures occurring due to shearing forces, which are thought to produce intracapsular fractures.

4. Displacement Patterns

  • Dislocation: The condylar fragment can dislocate out of the fossa, typically in an anterior direction, but it can also displace in any direction.

5. Clinical Implications of Fractures

  • Unilateral Fractures: A unilateral fracture with sufficient fragment overlap or dislocation can lead to premature posterior contact on the affected side and midline deviation toward the affected side.
  • Bilateral Fractures: Bilateral condylar fractures with fragment overlap or dislocation can result in bilateral posterior premature contact, anterior open bite, and minimal or no chin deviation.

6. Comminuted Fractures

  • Challenges: Comminuted mandibular fractures with bilateral condylar fractures can produce crossbites and increase the interangular distance, complicating accurate reduction. Failure to recognize and correct this increased interangular distance can lead to malocclusion after fixation.

7. Radiologic Imaging

  • Imaging Requirements: Radiologic imaging in two planes is necessary to diagnose condylar fractures effectively. Commonly used imaging techniques include:
    • Orthopantomogram (OPG): Provides a panoramic view of the mandible and can help identify fractures.
    • Posteroanterior (PA) Mandible View: Offers additional detail and perspective on the fracture.

Nasogastric Tube (Ryles Tube)

nasogastric tube (NG tube), commonly referred to as a Ryles tube, is a medical device used for various purposes, primarily involving the stomach. It is a long, hollow tube made of polyvinyl chloride (PVC) with one blunt end and multiple openings along its length. The tube is designed to be inserted through the nostril, down the esophagus, and into the stomach.

Description and Insertion

  • Structure: The NG tube has a blunt end that is inserted into the nostril, and it features multiple openings to allow for the passage of fluids and air. The open end of the tube is used for feeding or drainage.

  • Insertion Technique:

    1. The tube is gently passed through one of the nostrils and advanced through the nasopharynx and into the esophagus.
    2. Care is taken to ensure that the tube follows the natural curvature of the nasal passages and esophagus.
    3. Once the tube is in place, its position must be confirmed before any feeds or medications are administered.
  • Position Confirmation:

    • To check the position of the tube, air is pushed into the tube using a syringe.
    • The presence of air in the stomach is confirmed by auscultation with a stethoscope, listening for the characteristic "whoosh" sound of air entering the stomach.
    • Only after confirming that the tube is correctly positioned in the stomach should feeding or medication administration begin.
  • Securing the Tube: The tube is fixed to the nose using sticking plaster or adhesive tape to prevent displacement.

Uses of Nasogastric Tube

  1. Nutritional Support:

    • Enteral Feeding: The primary use of a nasogastric tube is to provide nutritional support to patients who are unable to take oral feeds due to various reasons, such as:
      • Neurological conditions (e.g., stroke, coma)
      • Surgical procedures affecting the gastrointestinal tract
      • Severe dysphagia (difficulty swallowing)
  2. Gastric Lavage:

    • Postoperative Care: NG tubes can be used for gastric lavage to flush out blood, fluids, or other contents from the stomach after surgery. This is particularly important in cases where there is a risk of aspiration or when the stomach needs to be emptied.
    • Poisoning: In cases of poisoning or overdose, gastric lavage may be performed using an NG tube to remove toxic substances from the stomach. This procedure should be done promptly and under medical supervision.
  3. Decompression:

    • Relieving Distension: The NG tube can also be used to decompress the stomach in cases of bowel obstruction or ileus, allowing for the removal of excess gas and fluid.
  4. Medication Administration:

    • The tube can be used to administer medications directly into the stomach for patients who cannot take oral medications.

Considerations and Complications

  • Patient Comfort: Insertion of the NG tube can be uncomfortable for patients, and proper technique should be used to minimize discomfort.

  • Complications: Potential complications include:

    • Nasal and esophageal irritation or injury
    • Misplacement of the tube into the lungs, leading to aspiration
    • Sinusitis or nasal ulceration with prolonged use
    • Gastrointestinal complications, such as gastric erosion or ulceration

Surgical Gut (Catgut)

Surgical gut, commonly known as catgut, is a type of absorbable suture material derived from the intestines of animals, primarily sheep and cattle. It has been widely used in surgical procedures due to its unique properties, although it has certain limitations. Below is a detailed overview of surgical gut, including its composition, properties, mechanisms of absorption, and clinical applications.

Composition and Preparation

  • Source: Surgical gut is prepared from:

    • Submucosa of Sheep Small Intestine: This layer is rich in collagen, which is essential for the strength and absorbability of the suture.
    • Serosal Layer of Cattle Small Intestine: This layer also provides collagen and is used in the production of surgical gut.
  • Collagen Content: The primary component of surgical gut is collagen, which is treated with formaldehyde to enhance its properties. This treatment helps stabilize the collagen structure and prolongs the suture's strength.

  • Suture Characteristics:

    • Multifilament Structure: Surgical gut is a capillary multifilament suture, meaning it consists of multiple strands that can absorb fluids, which can be beneficial in certain surgical contexts.
    • Smooth Surface: The sutures are machine-ground and polished to yield a relatively smooth surface, resembling that of monofilament sutures.

Sterilization

  • Sterilization Methods:

    • Ionizing Radiation: Surgical gut is typically sterilized using ionizing radiation, which effectively kills pathogens without denaturing the protein structure of the collagen.
    • Ethylene Oxide: This method can also be used for sterilization, and it prolongs the absorption time of the suture, making it suitable for specific applications.
  • Limitations of Autoclaving: Autoclaving is not suitable for surgical gut because it denatures the protein, leading to a significant loss of tensile strength.

Mechanism of Absorption

The absorption of surgical gut after implantation occurs through a twofold mechanism primarily involving macrophages:

  1. Molecular Bond Cleavage:

    • Acid hydrolytic and collagenolytic activities cleave the molecular bonds in the collagen structure of the suture.
  2. Digestion and Absorption:

    • Proteolytic enzymes further digest the collagen, leading to the gradual absorption of the suture material.
  • Foreign Body Reaction: Due to its collagenous composition, surgical gut stimulates a significant foreign body reaction in the implanted tissue, which can lead to inflammation.

Rate of Absorption and Loss of Tensile Strength

  • Variability: The rate of absorption and loss of tensile strength varies depending on the implantation site and the surrounding tissue environment.

  • Premature Absorption: Factors that can lead to premature absorption include:

    • Exposure to gastric secretions.
    • Presence of infection.
    • Highly vascularized tissues.
    • Conditions in protein-depleted patients.
  • Strength Loss Timeline:

    • Medium chromic gut loses about 33% of its original strength after 7 days of implantation and about 67% after 28 days.

Types of Surgical Gut

  1. Plain Gut:

    • Characteristics: Produces a severe tissue reaction and loses tensile strength rapidly, making it less useful in surgical applications.
    • Applications: Limited due to its inflammatory response and quick absorption.
  2. Chromic Gut:

    • Treatment: Treated with chromium salts to increase tensile strength and resistance to digestion while decreasing tissue reactivity.
    • Advantages: Provides a more controlled absorption rate and is more suitable for surgical use compared to plain gut.

Handling Characteristics

  • Good Handling: Surgical gut generally exhibits good handling characteristics, allowing for easy manipulation during surgical procedures.
  • Weakness When Wet: It swells and weakens when wet, which can affect knot security and overall performance during surgery.

Disadvantages

  • Intense Inflammatory Reaction: Surgical gut can provoke a significant inflammatory response, which may complicate healing.
  • Variability in Strength Loss: The unpredictable rate of loss of tensile strength can be a concern in surgical applications.
  • Capillarity: The multifilament structure can absorb fluids, which may lead to increased tissue reaction and complications.
  • Sensitivity Reactions: Some patients, particularly cats, may experience sensitivity reactions to surgical gut.

Clinical Applications

  • Use in Surgery: Surgical gut is used in various surgical procedures, particularly in soft tissue closures where absorbable sutures are preferred.
  • Adhesion Formation: The use of surgical gut is generally unwarranted in situations where adhesion formation is desired due to its inflammatory properties.

Hyperbaric Oxygen Therapy (HBOT)

Hyperbaric Oxygen Therapy (HBOT) is a medical treatment that involves the inhalation of 100% oxygen at pressures greater than atmospheric pressure, typically between 2 to 3 atmospheres (ATA). This therapy is used to enhance oxygen delivery to tissues, particularly in cases of ischemia, infection, and compromised healing. Below is a detailed overview of the advantages and mechanisms of HBOT, particularly in the context of surgical applications and tissue healing.

Mechanism of Action

  1. Increased Oxygen Availability:

    • Under hyperbaric conditions, the solubility of oxygen in plasma increases significantly, allowing for greater oxygen delivery to tissues, even in areas with compromised blood flow.
  2. Enhanced Vascular Supply:

    • HBOT promotes the formation of new blood vessels (neovascularization) and improves the overall vascular supply to tissues. This is particularly beneficial in areas that have been irradiated or are ischemic.
  3. Improved Oxygen Perfusion:

    • The therapy enhances oxygen perfusion to ischemic areas, which is crucial for healing and recovery, especially in cases of infection or tissue damage.
  4. Bactericidal and Bacteriostatic Effects:

    • Increased oxygen concentrations have a direct bactericidal effect on certain anaerobic bacteria and enhance the bacteriostatic action against aerobic bacteria. This can help in the management of infections, particularly in chronic wounds or osteomyelitis.

Advantages of Hyperbaric Oxygen Therapy

  1. Support for Soft Tissue Graft Healing:

    • While HBOT may not fully recruit the vascular support necessary for sustaining bone graft healing, it is beneficial in supporting soft tissue graft healing. The increased oxygen supply helps minimize compartmentalization and promotes better integration of grafts.
  2. Revascularization of Irradiated Tissues:

    • In patients with irradiated tissues, HBOT increases blood oxygen tension, enhancing the diffusion of oxygen into the tissues. This revascularization improves fibroblastic cellular density, which is essential for tissue repair and regeneration. It also limits the amount of non-viable tissue that may need to be surgically removed.
  3. Adjunctive Therapy in Surgical Procedures:

    • HBOT is often used as an adjunctive therapy in surgical procedures involving compromised tissues, such as in cases of necrotizing fasciitis, diabetic foot ulcers, and chronic non-healing wounds. It can enhance the effectiveness of surgical interventions by improving tissue oxygenation and promoting healing.
  4. Reduction of Complications:

    • By improving oxygenation and reducing the risk of infection, HBOT can help decrease postoperative complications, leading to better overall outcomes for patients undergoing surgery in compromised tissues.

Clinical Applications

  • Osteoradionecrosis: HBOT is commonly used in the management of osteoradionecrosis, a condition that can occur in patients who have received radiation therapy for head and neck cancers. The therapy helps to revascularize the affected bone and improve healing.

  • Chronic Wounds: It is effective in treating chronic wounds, particularly in diabetic patients, by enhancing oxygen delivery and promoting healing.

  • Infection Management: HBOT is beneficial in managing infections, especially those caused by anaerobic bacteria, by increasing the local oxygen concentration and enhancing the immune response.

  • Flap and Graft Survival: The therapy is used to improve the survival of flaps and grafts in reconstructive surgery by enhancing blood flow and oxygenation to the tissues.

Transoral Lithotomy: Procedure for Submandibular Duct Stone Removal

Transoral lithotomy is a surgical technique used to remove stones (calculi) from the submandibular duct (Wharton's duct). This procedure is typically performed under local anesthesia and is effective for addressing sialolithiasis (the presence of stones in the salivary glands).

Procedure

  1. Preoperative Preparation:

    • Radiographic Assessment: The exact location of the stone is determined using imaging studies, such as X-rays or ultrasound, to guide the surgical approach.
    • Local Anesthesia: The procedure is performed under local anesthesia to minimize discomfort for the patient.
  2. Surgical Technique:

    • Suture Placement: A suture is placed behind the stone to prevent it from moving backward during the procedure, facilitating easier access.
    • Incision: An incision is made in the mucosa of the floor of the mouth, parallel to the duct. Care is taken to avoid injury to surrounding structures, including:
      • Lingual Nerve: Responsible for sensory innervation to the tongue.
      • Submandibular Gland: The gland itself should be preserved to maintain salivary function.
  3. Blunt Dissection:

    • After making the incision, blunt dissection is performed to carefully displace the surrounding tissue and expose the duct.
  4. Identifying the Duct:

    • The submandibular duct is located, and the segment of the duct that contains the stone is identified.
  5. Stone Removal:

    • A longitudinal incision is made over the stone within the duct. The stone is then extracted using small forceps. Care is taken to ensure complete removal to prevent recurrence.
  6. Postoperative Considerations:

    • After the stone is removed, the incision may be closed with sutures, and the area is monitored for any signs of complications.

Complications

  • Bacterial Sialadenitis: If there is a secondary infection following the procedure, it can lead to bacterial sialadenitis, which is an inflammation of the salivary gland due to infection. Symptoms may include pain, swelling, and purulent discharge from the duct.

Marsupialization

Marsupialization, also known as decompression, is a surgical procedure used primarily to treat cystic lesions, particularly odontogenic cysts, by creating a surgical window in the wall of the cyst. This technique aims to reduce intracystic pressure, promote the shrinkage of the cyst, and encourage bone fill in the surrounding area.

Key Features of Marsupialization

  1. Indication:

    • Marsupialization is indicated for large cystic lesions that are not amenable to complete excision due to their size, location, or proximity to vital structures. It is commonly used for:
      • Odontogenic keratocysts
      • Dentigerous cysts
      • Radicular cysts
      • Other large cystic lesions in the jaw
  2. Surgical Technique:

    • Creation of a Surgical Window:
      • The procedure begins with the creation of a window in the wall of the cyst. This is typically done through an intraoral approach, where an incision is made in the mucosa overlying the cyst.
    • Evacuation of Cystic Content:
      • The cystic contents are evacuated, which helps to decrease the intracystic pressure. This reduction in pressure is crucial for promoting the shrinkage of the cyst and facilitating bone fill.
    • Suturing the Cystic Lining:
      • The remaining cystic lining is sutured to the edge of the oral mucosa. This can be done using continuous sutures or interrupted sutures, depending on the surgeon's preference and the specific clinical situation.
  3. Benefits:

    • Pressure Reduction: By decreasing the intracystic pressure, marsupialization can lead to the gradual reduction in the size of the cyst.
    • Bone Regeneration: The procedure promotes bone fill in the area previously occupied by the cyst, which can help restore normal anatomy and function.
    • Minimally Invasive: Compared to complete cyst excision, marsupialization is less invasive and can be performed with less morbidity.
  4. Postoperative Care:

    • Patients may experience some discomfort and swelling following the procedure, which can be managed with analgesics.
    • Regular follow-up appointments are necessary to monitor the healing process and assess the reduction in cyst size.
    • Oral hygiene is crucial to prevent infection at the surgical site.
  5. Outcomes:

    • Marsupialization can be an effective treatment for large cystic lesions, leading to significant reduction in size and promoting bone regeneration. In some cases, if the cyst does not resolve completely, further treatment options, including complete excision, may be considered.

Explore by Exams