NEET MDS Lessons
Oral and Maxillofacial Surgery
Management of Mandibular Fractures: Plate Fixation Techniques
The management of mandibular fractures involves various techniques for fixation, depending on the type and location of the fracture. .
1. Plate Placement in the Body of the Mandible
-
Single Plate Fixation:
- A single plate is recommended to be placed just below the apices of the teeth but above the inferior alveolar nerve canal. This positioning helps to avoid damage to the nerve while providing adequate support to the fracture site.
- Miniplate Fixation: Effective for non-displaced or minimally displaced fractures, provided the fracture is not severely comminuted. The miniplate should be placed at the superior border of the mandible, acting as a tension band that prevents distraction at the superior border while maintaining compression at the inferior border during function.
-
Additional Plates:
- While a solitary plate can provide adequate rigidity, the placement of an additional plate or the use of multi-armed plates (Y or H plates) can enhance stability, especially in more complex fractures.
2. Plate Placement in the Parasymphyseal and Symphyseal Regions
-
Two Plates for Stability:
- In the parasymphyseal and symphyseal regions, two plates are
recommended due to the torsional forces generated during function.
- First Plate: Placed at the inferior aspect of the mandible.
- Second Plate: Placed parallel and at least 5 mm superior to the first plate (subapical).
- In the parasymphyseal and symphyseal regions, two plates are
recommended due to the torsional forces generated during function.
-
Plate Placement Behind the Mental Foramen:
- A plate can be fixed in the subapical area and another near the lower border. Additionally, plates can be placed on the external oblique ridge or parallel to the lower border of the mandible.
3. Management of Comminuted or Grossly Displaced Fractures
- Reconstruction Plates:
- Comminuted or grossly displaced fractures of the mandibular body require fixation with a locking reconstruction plate or a standard reconstruction plate. These plates provide the necessary stability for complex fractures.
4. Management of Mandibular Angle Fractures
- Miniplate Fixation:
- When treating mandibular angle fractures, the plate should be placed at the superolateral aspect of the mandible, extending onto the broad surface of the external oblique ridge. This placement helps to counteract the forces acting on the angle of the mandible.
5. Stress Patterns and Plate Design
-
Stress Patterns:
- The zone of compression is located at the superior border of the mandible, while the neutral axis is approximately at the level of the inferior alveolar canal. Understanding these stress patterns is crucial for optimal plate placement.
-
Miniplate Characteristics:
- Developed by Michelet et al. and popularized by Champy et al., miniplates utilize monocortical screws and require a minimum of two screws in each osseous segment. They are smaller than standard plates, allowing for smaller incisions and less soft tissue dissection, which reduces the risk of complications.
6. Other Fixation Techniques
-
Compression Osteosynthesis:
- Indicated for non-oblique fractures that demonstrate good body opposition after reduction. Compression plates, such as dynamic compression plates (DCP), are used to achieve this. The inclined plate within the hole allows for translation of the bone toward the fracture site as the screw is tightened.
-
Fixation Osteosynthesis:
- For severely oblique fractures, comminuted fractures, and fractures with bone loss, compression plates are contraindicated. In these cases, non-compression osteosynthesis using locking plates or reconstruction plates is preferred. This method is also suitable for patients with questionable postoperative compliance or a non-stable mandible.
Structure of Orbital Walls
The orbit is a complex bony structure that houses the eye and its associated structures. It is composed of several walls, each with distinct anatomical features and clinical significance. Here’s a detailed overview of the structure of the orbital walls:
1. Lateral Wall
- Composition: The lateral wall of the orbit is primarily
formed by two bones:
- Zygomatic Bone: This bone contributes significantly to the lateral aspect of the orbit.
- Greater Wing of the Sphenoid: This bone provides strength and stability to the lateral wall.
- Orientation: The lateral wall is inclined at approximately 45 degrees to the long axis of the skull, which is important for the positioning of the eye and the alignment of the visual axis.
2. Medial Wall
- Composition: The medial wall is markedly different from
the lateral wall and is primarily formed by:
- Orbital Plate of the Ethmoid Bone: This plate is very thin and fragile, making the medial wall susceptible to injury.
- Height and Orientation: The medial wall is about half the height of the lateral wall. It is aligned parallel to the antero-posterior axis (median plane) of the skull and meets the floor of the orbit at an angle of about 45 degrees.
- Fragility: The medial wall is extremely fragile due to
its proximity to:
- Ethmoid Air Cells: These air-filled spaces can compromise the integrity of the medial wall.
- Nasal Cavity: The close relationship with the nasal cavity further increases the risk of injury.
3. Roof of the Orbit
- Composition: The roof is formed by the frontal bone and is reinforced laterally by the greater wing of the sphenoid.
- Thickness: While the roof is thin, it is structurally reinforced, which helps protect the contents of the orbit.
- Fracture Patterns: Fractures of the roof often involve the frontal bone and tend to extend medially. Such fractures can lead to complications, including orbital hemorrhage or involvement of the frontal sinus.
4. Floor of the Orbit
- Composition: The floor is primarily formed by the maxilla, with contributions from the zygomatic and palatine bones.
- Thickness: The floor is very thin, typically measuring about 0.5 mm in thickness, making it particularly vulnerable to fractures.
- Clinical Significance:
- Blow-Out Fractures: The floor is commonly involved
in "blow-out" fractures, which occur when a blunt force impacts the eye,
causing the floor to fracture and displace. These fractures can be
classified as:
- Pure Blow-Out Fractures: Isolated fractures of the orbital floor.
- Impure Blow-Out Fractures: Associated with fractures in the zygomatic area.
- Infraorbital Groove and Canal: The presence of the infraorbital groove and canal further weakens the floor. The infraorbital nerve and vessels run through this canal, making them susceptible to injury during fractures. Compression, contusion, or direct penetration from bone spicules can lead to sensory deficits in the distribution of the infraorbital nerve.
- Blow-Out Fractures: The floor is commonly involved
in "blow-out" fractures, which occur when a blunt force impacts the eye,
causing the floor to fracture and displace. These fractures can be
classified as:
Unicystic Ameloblastoma
Unicystic ameloblastoma is a specific type of ameloblastoma characterized by a single cystic cavity that exhibits ameloblastomatous differentiation in its lining. This type of ameloblastoma is distinct from other forms due to its unique clinical, radiographic features, and behavior.
Characteristics of Unicystic Ameloblastoma
-
Definition:
- Unicystic ameloblastoma is defined as a single cystic cavity that shows ameloblastomatous differentiation in the lining.
-
Clinical Features:
- More than 90% of unicystic ameloblastomas are found in the posterior mandible.
- They typically surround the crown of an unerupted mandibular third molar and may resemble a dentigerous cyst.
-
Radiographic Features:
- Appears as a well-defined radiolucent lesion, often associated with the crown of an impacted tooth.
-
Histopathology:
- There are three types of unicystic ameloblastomas:
- Luminal: The cystic lining shows ameloblastomatous changes without infiltration into the wall.
- Intraluminal: The tumor is located within the cystic cavity but does not infiltrate the wall.
- Mural: The wall of the lesion is infiltrated by typical follicular or plexiform ameloblastoma. This type behaves similarly to conventional ameloblastoma and requires more aggressive treatment.
- There are three types of unicystic ameloblastomas:
-
Recurrence Rate:
- Unicystic ameloblastomas, particularly those without mural extension, have a low recurrence rate following conservative treatment.
Treatment of Ameloblastomas
-
Conventional (Follicular) Ameloblastoma:
- Surgical Resection: Recommended with 1.0 to 1.5 cm margins and removal of one uninvolved anatomic barrier.
- Enucleation and Curettage: If used, this method has a high recurrence rate (70-85%).
-
Unicystic Ameloblastoma (Without Mural Extension):
- Conservative Treatment: Enucleation and curettage are typically successful due to the intraluminal location of the tumor.
-
Unicystic Ameloblastoma (With Mural Extension):
- Aggressive Treatment: Managed similarly to conventional ameloblastomas due to the infiltrative nature of the mural component.
-
Intraosseous Solid and Multicystic Ameloblastomas:
- Mandibular Excision: Block resection is performed, either with or without continuity defect, removing up to 1.5 cm of clinically normal bone around the margin.
-
Peripheral Ameloblastoma:
- Simple Excision: These tumors are less aggressive and can be treated with simple excision, ensuring a rim of soft tissue tumor-free margins (1-1.5 cm).
- If bone involvement is indicated by biopsy, block resection with continuity defect is preferred.
-
Recurrent Ameloblastoma:
- Recurrences can occur 5-10 years after initial treatment and are best managed by resection with 1.5 cm margins.
- Resection should be based on initial radiographs rather than those showing recurrence.
Piezosurgery
Piezosurgery is an advanced surgical technique that utilizes ultrasonic vibrations to cut bone and other hard tissues with precision. This method has gained popularity in oral and maxillofacial surgery due to its ability to minimize trauma to surrounding soft tissues, enhance surgical accuracy, and improve patient outcomes. Below is a detailed overview of the principles, advantages, applications, and specific uses of piezosurgery in oral surgery.
Principles of Piezosurgery
- Ultrasonic Technology: Piezosurgery employs ultrasonic waves to create high-frequency vibrations in specially designed surgical tips. These vibrations allow for precise cutting of bone while preserving adjacent soft tissues.
- Selective Cutting: The ultrasonic frequency is tuned to selectively cut mineralized tissues (like bone) without affecting softer tissues (like nerves and blood vessels). This selectivity reduces the risk of complications and enhances healing.
Advantages of Piezosurgery
-
Strength and Durability of Tips:
- Piezosurgery tips are made from high-quality materials that are strong and resistant to fracture. This durability allows for extended use without the need for frequent replacements, making them cost-effective in the long run.
-
Access to Difficult Areas:
- The design of piezosurgery tips allows them to reach challenging anatomical areas that may be difficult to access with traditional surgical instruments. This is particularly beneficial in complex procedures involving the mandible and maxilla.
-
Minimized Trauma:
- The ultrasonic cutting action produces less heat and vibration compared to traditional rotary instruments, which helps to preserve the integrity of surrounding soft tissues and reduces postoperative pain and swelling.
-
Enhanced Precision:
- The ability to perform precise cuts allows for better control during surgical procedures, leading to improved outcomes and reduced complications.
-
Reduced Blood Loss:
- The selective cutting action minimizes damage to blood vessels, resulting in less bleeding during surgery.
Applications in Oral Surgery
Piezosurgery has a variety of applications in oral and maxillofacial surgery, including:
-
Osteotomies:
- LeFort I Osteotomy: Piezosurgery is particularly useful in performing pterygoid disjunction during LeFort I osteotomy. The ability to precisely cut bone in the pterygoid region allows for better access and alignment during maxillary repositioning.
- Intraoral Vertical Ramus Osteotomy (IVRO): The lower border cut at the lateral surface of the ramus can be performed with piezosurgery, allowing for precise osteotomy while minimizing trauma to surrounding structures.
- Inferior Alveolar Nerve Lateralization: Piezosurgery can be used to carefully lateralize the inferior alveolar nerve during procedures such as bone grafting or implant placement, reducing the risk of nerve injury.
-
Bone Grafting:
- Piezosurgery is effective in harvesting bone grafts from donor sites, as it allows for precise cuts and minimal damage to surrounding tissues. This is particularly important in procedures requiring autogenous bone grafts.
-
Implant Placement:
- The technique can be used to prepare the bone for dental implants, allowing for precise osteotomy and reducing the risk of complications associated with traditional drilling methods.
-
Sinus Lift Procedures:
- Piezosurgery is beneficial in sinus lift procedures, where precise bone cutting is required to elevate the sinus membrane without damaging it.
-
Tumor Resection:
- The precision of piezosurgery makes it suitable for resecting tumors in the jaw while preserving surrounding healthy tissue.
Types of Hemorrhage
Hemorrhage, or excessive bleeding, can occur during and after surgical procedures. Understanding the different types of hemorrhage is crucial for effective management and prevention of complications. The three main types of hemorrhage are primary, reactionary, and secondary hemorrhage.
1. Primary Hemorrhage
- Definition: Primary hemorrhage refers to bleeding that occurs at the time of surgery.
- Causes:
- Injury to blood vessels during the surgical procedure.
- Inadequate hemostasis (control of bleeding) during the operation.
- Management:
- Immediate control of bleeding through direct pressure, cauterization, or ligation of blood vessels.
- Use of hemostatic agents or sutures to secure bleeding vessels.
- Clinical Significance: Prompt recognition and management of primary hemorrhage are essential to prevent significant blood loss and ensure patient safety during surgery.
2. Reactionary Hemorrhage
- Definition: Reactionary hemorrhage occurs within a few hours after surgery, typically when the initial vasoconstriction of damaged blood vessels subsides.
- Causes:
- The natural response of blood vessels to constrict after injury may initially control bleeding. However, as the vasoconstriction diminishes, previously damaged vessels may begin to bleed again.
- Movement or changes in position of the patient can also contribute to the reopening of previously clamped vessels.
- Management:
- Monitoring the patient closely in the immediate postoperative period for signs of bleeding.
- If reactionary hemorrhage occurs, surgical intervention may be necessary to identify and control the source of bleeding.
- Clinical Significance: Awareness of the potential for reactionary hemorrhage is important for postoperative care, as it can lead to complications if not addressed promptly.
3. Secondary Hemorrhage
- Definition: Secondary hemorrhage refers to bleeding that occurs up to 14 days postoperatively, often as a result of infection or necrosis of tissue.
- Causes:
- Infection at the surgical site can lead to tissue breakdown and erosion of blood vessels, resulting in bleeding.
- Sloughing of necrotic tissue may also expose blood vessels that were previously protected.
- Management:
- Careful monitoring for signs of infection, such as increased pain, swelling, or discharge from the surgical site.
- Surgical intervention may be required to control bleeding and address the underlying infection.
- Antibiotic therapy may be necessary to treat the infection and prevent further complications.
- Clinical Significance: Secondary hemorrhage can be a serious complication, as it may indicate underlying issues such as infection or inadequate healing. Early recognition and management are crucial to prevent significant blood loss and promote recovery.
Classes of Hemorrhagic Shock (ATLS Classification)
Hemorrhagic shock is a critical condition resulting from significant blood loss, leading to inadequate tissue perfusion and oxygenation. The Advanced Trauma Life Support (ATLS) course classifies hemorrhagic shock into four classes based on various physiological parameters. Understanding these classes helps guide the management and treatment of patients experiencing hemorrhagic shock.
Class Descriptions
-
Class I Hemorrhagic Shock:
- Blood Loss: 0-15% (up to 750 mL)
- CNS Status: Slightly anxious; the patient may be alert and oriented.
- Pulse: Heart rate <100 beats/min.
- Blood Pressure: Normal.
- Pulse Pressure: Normal.
- Respiratory Rate: 14-20 breaths/min.
- Urine Output: >30 mL/hr, indicating adequate renal perfusion.
- Fluid Resuscitation: Crystalloid fluids are typically sufficient.
-
Class II Hemorrhagic Shock:
- Blood Loss: 15-30% (750-1500 mL)
- CNS Status: Mildly anxious; the patient may show signs of distress.
- Pulse: Heart rate >100 beats/min.
- Blood Pressure: Still normal, but compensatory mechanisms are activated.
- Pulse Pressure: Decreased due to increased heart rate and peripheral vasoconstriction.
- Respiratory Rate: 20-30 breaths/min.
- Urine Output: 20-30 mL/hr, indicating reduced renal perfusion.
- Fluid Resuscitation: Crystalloid fluids are still appropriate.
-
Class III Hemorrhagic Shock:
- Blood Loss: 30-40% (1500-2000 mL)
- CNS Status: Anxious or confused; the patient may have altered mental status.
- Pulse: Heart rate >120 beats/min.
- Blood Pressure: Decreased; signs of hypotension may be present.
- Pulse Pressure: Decreased.
- Respiratory Rate: 30-40 breaths/min.
- Urine Output: 5-15 mL/hr, indicating significant renal impairment.
- Fluid Resuscitation: Crystalloid fluids plus blood products may be necessary.
-
Class IV Hemorrhagic Shock:
- Blood Loss: >40% (>2000 mL)
- CNS Status: Confused or lethargic; the patient may be unresponsive.
- Pulse: Heart rate >140 beats/min.
- Blood Pressure: Decreased; severe hypotension is likely.
- Pulse Pressure: Decreased.
- Respiratory Rate: >35 breaths/min.
- Urine Output: Negligible, indicating severe renal failure.
- Fluid Resuscitation: Immediate crystalloid and blood products are critical.
Cryosurgery
Cryosurgery is a medical technique that utilizes extreme rapid cooling to freeze and destroy tissues. This method is particularly effective for treating various conditions, including malignancies, vascular tumors, and aggressive tumors such as ameloblastoma. The process involves applying very low temperatures to induce localized tissue destruction while minimizing damage to surrounding healthy tissues.
Mechanism of Action
The effects of rapid freezing on tissues include:
-
Reduction of Intracellular Water:
- Rapid cooling causes water within the cells to freeze, leading to a decrease in intracellular water content.
-
Cellular and Cell Membrane Shrinkage:
- The freezing process results in the shrinkage of cells and their membranes, contributing to cellular damage.
-
Increased Concentrations of Intracellular Solutes:
- As water is removed from the cells, the concentration of solutes (such as proteins and electrolytes) increases, which can disrupt cellular function.
-
Formation of Ice Crystals:
- Both intracellular and extracellular ice crystals form during the freezing process. The formation of these crystals can puncture cell membranes and disrupt cellular integrity, leading to cell death.
Cryosurgery Apparatus
The equipment used in cryosurgery typically includes:
-
Storage Bottles for Pressurized Liquid Gases:
- Liquid Nitrogen: Provides extremely low temperatures of approximately -196°C, making it highly effective for cryosurgery.
- Liquid Carbon Dioxide or Nitrous Oxide: These gases provide temperatures ranging from -20°C to -90°C, which can also be used for various applications.
-
Pressure and Temperature Gauge:
- This gauge is essential for monitoring the pressure and temperature of the cryogenic gases to ensure safe and effective application.
-
Probe with Tubing:
- A specialized probe is used to direct the pressurized gas to the targeted tissues, allowing for precise application of the freezing effect.
Treatment Parameters
- Time and Temperature: The specific time and temperature used during cryosurgery depend on the depth and extent of the tumor being treated. The clinician must carefully assess these factors to achieve optimal results while minimizing damage to surrounding healthy tissues.
Applications
Cryosurgery is applied in the treatment of various conditions, including:
- Malignancies: Used to destroy cancerous tissues in various organs.
- Vascular Tumors: Effective in treating tumors that have a significant blood supply.
- Aggressive Tumors: Such as ameloblastoma, where rapid and effective tissue destruction is necessary.