NEET MDS Lessons
Oral and Maxillofacial Surgery
Piezosurgery
Piezosurgery is an advanced surgical technique that utilizes ultrasonic vibrations to cut bone and other hard tissues with precision. This method has gained popularity in oral and maxillofacial surgery due to its ability to minimize trauma to surrounding soft tissues, enhance surgical accuracy, and improve patient outcomes. Below is a detailed overview of the principles, advantages, applications, and specific uses of piezosurgery in oral surgery.
Principles of Piezosurgery
- Ultrasonic Technology: Piezosurgery employs ultrasonic waves to create high-frequency vibrations in specially designed surgical tips. These vibrations allow for precise cutting of bone while preserving adjacent soft tissues.
- Selective Cutting: The ultrasonic frequency is tuned to selectively cut mineralized tissues (like bone) without affecting softer tissues (like nerves and blood vessels). This selectivity reduces the risk of complications and enhances healing.
Advantages of Piezosurgery
-
Strength and Durability of Tips:
- Piezosurgery tips are made from high-quality materials that are strong and resistant to fracture. This durability allows for extended use without the need for frequent replacements, making them cost-effective in the long run.
-
Access to Difficult Areas:
- The design of piezosurgery tips allows them to reach challenging anatomical areas that may be difficult to access with traditional surgical instruments. This is particularly beneficial in complex procedures involving the mandible and maxilla.
-
Minimized Trauma:
- The ultrasonic cutting action produces less heat and vibration compared to traditional rotary instruments, which helps to preserve the integrity of surrounding soft tissues and reduces postoperative pain and swelling.
-
Enhanced Precision:
- The ability to perform precise cuts allows for better control during surgical procedures, leading to improved outcomes and reduced complications.
-
Reduced Blood Loss:
- The selective cutting action minimizes damage to blood vessels, resulting in less bleeding during surgery.
Applications in Oral Surgery
Piezosurgery has a variety of applications in oral and maxillofacial surgery, including:
-
Osteotomies:
- LeFort I Osteotomy: Piezosurgery is particularly useful in performing pterygoid disjunction during LeFort I osteotomy. The ability to precisely cut bone in the pterygoid region allows for better access and alignment during maxillary repositioning.
- Intraoral Vertical Ramus Osteotomy (IVRO): The lower border cut at the lateral surface of the ramus can be performed with piezosurgery, allowing for precise osteotomy while minimizing trauma to surrounding structures.
- Inferior Alveolar Nerve Lateralization: Piezosurgery can be used to carefully lateralize the inferior alveolar nerve during procedures such as bone grafting or implant placement, reducing the risk of nerve injury.
-
Bone Grafting:
- Piezosurgery is effective in harvesting bone grafts from donor sites, as it allows for precise cuts and minimal damage to surrounding tissues. This is particularly important in procedures requiring autogenous bone grafts.
-
Implant Placement:
- The technique can be used to prepare the bone for dental implants, allowing for precise osteotomy and reducing the risk of complications associated with traditional drilling methods.
-
Sinus Lift Procedures:
- Piezosurgery is beneficial in sinus lift procedures, where precise bone cutting is required to elevate the sinus membrane without damaging it.
-
Tumor Resection:
- The precision of piezosurgery makes it suitable for resecting tumors in the jaw while preserving surrounding healthy tissue.
Classes of Hemorrhagic Shock (ATLS Classification)
Hemorrhagic shock is a critical condition resulting from significant blood loss, leading to inadequate tissue perfusion and oxygenation. The Advanced Trauma Life Support (ATLS) course classifies hemorrhagic shock into four classes based on various physiological parameters. Understanding these classes helps guide the management and treatment of patients experiencing hemorrhagic shock.
Class Descriptions
-
Class I Hemorrhagic Shock:
- Blood Loss: 0-15% (up to 750 mL)
- CNS Status: Slightly anxious; the patient may be alert and oriented.
- Pulse: Heart rate <100 beats/min.
- Blood Pressure: Normal.
- Pulse Pressure: Normal.
- Respiratory Rate: 14-20 breaths/min.
- Urine Output: >30 mL/hr, indicating adequate renal perfusion.
- Fluid Resuscitation: Crystalloid fluids are typically sufficient.
-
Class II Hemorrhagic Shock:
- Blood Loss: 15-30% (750-1500 mL)
- CNS Status: Mildly anxious; the patient may show signs of distress.
- Pulse: Heart rate >100 beats/min.
- Blood Pressure: Still normal, but compensatory mechanisms are activated.
- Pulse Pressure: Decreased due to increased heart rate and peripheral vasoconstriction.
- Respiratory Rate: 20-30 breaths/min.
- Urine Output: 20-30 mL/hr, indicating reduced renal perfusion.
- Fluid Resuscitation: Crystalloid fluids are still appropriate.
-
Class III Hemorrhagic Shock:
- Blood Loss: 30-40% (1500-2000 mL)
- CNS Status: Anxious or confused; the patient may have altered mental status.
- Pulse: Heart rate >120 beats/min.
- Blood Pressure: Decreased; signs of hypotension may be present.
- Pulse Pressure: Decreased.
- Respiratory Rate: 30-40 breaths/min.
- Urine Output: 5-15 mL/hr, indicating significant renal impairment.
- Fluid Resuscitation: Crystalloid fluids plus blood products may be necessary.
-
Class IV Hemorrhagic Shock:
- Blood Loss: >40% (>2000 mL)
- CNS Status: Confused or lethargic; the patient may be unresponsive.
- Pulse: Heart rate >140 beats/min.
- Blood Pressure: Decreased; severe hypotension is likely.
- Pulse Pressure: Decreased.
- Respiratory Rate: >35 breaths/min.
- Urine Output: Negligible, indicating severe renal failure.
- Fluid Resuscitation: Immediate crystalloid and blood products are critical.
Management of Mandibular Fractures: Plate Fixation Techniques
The management of mandibular fractures involves various techniques for fixation, depending on the type and location of the fracture. .
1. Plate Placement in the Body of the Mandible
-
Single Plate Fixation:
- A single plate is recommended to be placed just below the apices of the teeth but above the inferior alveolar nerve canal. This positioning helps to avoid damage to the nerve while providing adequate support to the fracture site.
- Miniplate Fixation: Effective for non-displaced or minimally displaced fractures, provided the fracture is not severely comminuted. The miniplate should be placed at the superior border of the mandible, acting as a tension band that prevents distraction at the superior border while maintaining compression at the inferior border during function.
-
Additional Plates:
- While a solitary plate can provide adequate rigidity, the placement of an additional plate or the use of multi-armed plates (Y or H plates) can enhance stability, especially in more complex fractures.
2. Plate Placement in the Parasymphyseal and Symphyseal Regions
-
Two Plates for Stability:
- In the parasymphyseal and symphyseal regions, two plates are
recommended due to the torsional forces generated during function.
- First Plate: Placed at the inferior aspect of the mandible.
- Second Plate: Placed parallel and at least 5 mm superior to the first plate (subapical).
- In the parasymphyseal and symphyseal regions, two plates are
recommended due to the torsional forces generated during function.
-
Plate Placement Behind the Mental Foramen:
- A plate can be fixed in the subapical area and another near the lower border. Additionally, plates can be placed on the external oblique ridge or parallel to the lower border of the mandible.
3. Management of Comminuted or Grossly Displaced Fractures
- Reconstruction Plates:
- Comminuted or grossly displaced fractures of the mandibular body require fixation with a locking reconstruction plate or a standard reconstruction plate. These plates provide the necessary stability for complex fractures.
4. Management of Mandibular Angle Fractures
- Miniplate Fixation:
- When treating mandibular angle fractures, the plate should be placed at the superolateral aspect of the mandible, extending onto the broad surface of the external oblique ridge. This placement helps to counteract the forces acting on the angle of the mandible.
5. Stress Patterns and Plate Design
-
Stress Patterns:
- The zone of compression is located at the superior border of the mandible, while the neutral axis is approximately at the level of the inferior alveolar canal. Understanding these stress patterns is crucial for optimal plate placement.
-
Miniplate Characteristics:
- Developed by Michelet et al. and popularized by Champy et al., miniplates utilize monocortical screws and require a minimum of two screws in each osseous segment. They are smaller than standard plates, allowing for smaller incisions and less soft tissue dissection, which reduces the risk of complications.
6. Other Fixation Techniques
-
Compression Osteosynthesis:
- Indicated for non-oblique fractures that demonstrate good body opposition after reduction. Compression plates, such as dynamic compression plates (DCP), are used to achieve this. The inclined plate within the hole allows for translation of the bone toward the fracture site as the screw is tightened.
-
Fixation Osteosynthesis:
- For severely oblique fractures, comminuted fractures, and fractures with bone loss, compression plates are contraindicated. In these cases, non-compression osteosynthesis using locking plates or reconstruction plates is preferred. This method is also suitable for patients with questionable postoperative compliance or a non-stable mandible.
Gow-Gates Technique for Mandibular Anesthesia
The Gow-Gates technique is a well-established method for achieving effective anesthesia of the mandibular teeth and associated soft tissues. Developed by George Albert Edwards Gow-Gates, this technique is known for its high success rate in providing sensory anesthesia to the entire distribution of the mandibular nerve (V3).
Overview
- Challenges in Mandibular Anesthesia: Achieving
successful anesthesia in the mandible is often more difficult than in the
maxilla due to:
- Greater anatomical variation in the mandible.
- The need for deeper penetration of soft tissues.
- Success Rate: Gow-Gates reported an astonishing success rate of approximately 99% in his experienced hands, making it a reliable choice for dental practitioners.
Anesthesia Coverage
The Gow-Gates technique provides sensory anesthesia to the following nerves:
- Inferior Alveolar Nerve
- Lingual Nerve
- Mylohyoid Nerve
- Mental Nerve
- Incisive Nerve
- Auriculotemporal Nerve
- Buccal Nerve
This comprehensive coverage makes it particularly useful for procedures involving multiple mandibular teeth.
Technique
Equipment
- Needle: A 25- or 27-gauge long needle is recommended for this technique.
Injection Site and Target Area
-
Area of Insertion:
- The injection is performed on the mucous membrane on the mesial aspect of the mandibular ramus.
- The insertion point is located on a line drawn from the intertragic notch to the corner of the mouth, just distal to the maxillary second molar.
-
Target Area:
- The target for the injection is the lateral side of the condylar neck, just below the insertion of the lateral pterygoid muscle.
Landmarks
Extraoral Landmarks:
- Lower Border of the Tragus: This serves as a reference point. The center of the external auditory meatus is the ideal landmark, but since it is concealed by the tragus, the lower border is used as a visual aid.
- Corner of the Mouth: This helps in aligning the injection site.
Intraoral Landmarks:
- Height of Injection: The needle tip should be placed just below the mesiopalatal cusp of the maxillary second molar to establish the correct height for the injection.
- Penetration Point: The needle should penetrate the soft tissues just distal to the maxillary second molar at the height established in the previous step.
Condylar Fractures
Condylar fractures are a significant type of mandibular fracture, accounting for a notable percentage of all mandibular injuries. Understanding their characteristics, associated injuries, and implications for treatment is essential for effective management. Below is a detailed overview of condylar fractures.
1. Prevalence and Associated Injuries
- Incidence: Condylar fractures account for 26-57% of all mandibular fractures.
- Associated Fractures: Approximately 48-66% of patients with a condylar fracture will also have a fracture of the body or angle of the mandible.
- Unilateral Fractures: Unilateral fractures of the condyle occur 84% of the time.
2. Types of Condylar Fractures
- Subcondylar Fractures: Approximately 62% of condylar fractures are classified as subcondylar.
- Condylar Neck Fractures: About 24% are neck fractures.
- Intracapsular Fractures: Approximately 14% are intracapsular.
- Severe Displacement: About 16% of condylar fractures are associated with severe displacement.
3. Mechanism of Injury
- Bilateral Fractures: Symmetrical impacts can cause bilateral fractures, with contralateral fractures occurring due to shearing forces, which are thought to produce intracapsular fractures.
4. Displacement Patterns
- Dislocation: The condylar fragment can dislocate out of the fossa, typically in an anterior direction, but it can also displace in any direction.
5. Clinical Implications of Fractures
- Unilateral Fractures: A unilateral fracture with sufficient fragment overlap or dislocation can lead to premature posterior contact on the affected side and midline deviation toward the affected side.
- Bilateral Fractures: Bilateral condylar fractures with fragment overlap or dislocation can result in bilateral posterior premature contact, anterior open bite, and minimal or no chin deviation.
6. Comminuted Fractures
- Challenges: Comminuted mandibular fractures with bilateral condylar fractures can produce crossbites and increase the interangular distance, complicating accurate reduction. Failure to recognize and correct this increased interangular distance can lead to malocclusion after fixation.
7. Radiologic Imaging
- Imaging Requirements: Radiologic imaging in two planes
is necessary to diagnose condylar fractures effectively. Commonly used
imaging techniques include:
- Orthopantomogram (OPG): Provides a panoramic view of the mandible and can help identify fractures.
- Posteroanterior (PA) Mandible View: Offers additional detail and perspective on the fracture.
Overview of Infective Endocarditis (IE):
- Infective endocarditis is an inflammation of the inner lining of the heart, often caused by bacterial infection.
- Certain cardiac conditions increase the risk of developing IE, particularly during dental procedures that may introduce bacteria into the bloodstream.
High-Risk Cardiac Conditions: Antibiotic prophylaxis is recommended for patients with the following high-risk cardiac conditions:
- Prosthetic cardiac valves
- History of infective endocarditis
- Cyanotic congenital heart disease
- Surgically constructed systemic-pulmonary shunts
- Other congenital heart defects
- Acquired valvular dysfunction
- Hypertrophic cardiomyopathy
- Mitral valve prolapse with regurgitation
Moderate-Risk Cardiac Conditions:
- Mitral valve prolapse without regurgitation
- Previous rheumatic fever with valvular dysfunction
Negligible Risk Conditions:
- Coronary bypass grafts
- Physiological or functional heart murmurs
Prophylaxis Recommendations
When to Administer Prophylaxis:
- Prophylaxis is indicated for dental procedures that involve:
- Manipulation of gingival tissue
- Perforation of the oral mucosa
- Procedures that may cause bleeding
Antibiotic Regimens:
- The standard prophylactic regimen is a single dose administered 30-60
minutes before the procedure:
- Amoxicillin:
- Adult dose: 2 g orally
- Pediatric dose: 50 mg/kg orally (maximum 2 g)
- Ampicillin:
- Adult dose: 2 g IV/IM
- Pediatric dose: 50 mg/kg IV/IM (maximum 2 g)
- Clindamycin (for penicillin-allergic patients):
- Adult dose: 600 mg orally
- Pediatric dose: 20 mg/kg orally (maximum 600 mg)
- Cephalexin (for penicillin-allergic patients):
- Adult dose: 2 g orally
- Pediatric dose: 50 mg/kg orally (maximum 2 g)
- Amoxicillin:
Osteoradionecrosis
Osteoradionecrosis (ORN) is a condition that can occur following radiation therapy, particularly in the head and neck region, leading to the death of bone tissue due to compromised blood supply. The management of ORN is complex and requires a multidisciplinary approach. Below is a comprehensive overview of the treatment strategies for osteoradionecrosis.
1. Debridement
- Purpose: Surgical debridement involves the removal of necrotic and infected tissue to promote healing and prevent the spread of infection.
- Procedure: This may include the excision of necrotic bone and soft tissue, allowing for better access to healthy tissue.
2. Control of Infection
- Antibiotic Therapy: Broad-spectrum antibiotics are administered to control any acute infections present. However, it is important to note that antibiotics may not penetrate necrotic bone effectively due to poor circulation.
- Monitoring: Regular assessment of infection status is crucial to adjust antibiotic therapy as needed.
3. Hospitalization
- Indication: Patients with severe ORN or those requiring surgical intervention may need hospitalization for close monitoring and management.
4. Supportive Treatment
- Hydration: Fluid therapy is essential to maintain hydration and support overall health.
- Nutritional Support: A high-protein and vitamin-rich diet is recommended to promote healing and recovery.
5. Pain Management
- Analgesics: Both narcotic and non-narcotic analgesics are used to manage pain effectively.
- Regional Anesthesia: Techniques such as bupivacaine (Marcaine) injections, alcohol nerve blocks, nerve avulsion, and rhizotomy may be employed for more effective pain control.
6. Good Oral Hygiene
- Oral Rinses: Regular use of oral rinses, such as 1% sodium fluoride gel, 1% chlorhexidine gluconate, and plain water, helps prevent radiation-induced caries and manage xerostomia and mucositis. These rinses can enhance local immune responses and antimicrobial activity.
7. Frequent Irrigations of Wounds
- Purpose: Regular irrigation of the affected areas helps to keep the wound clean and free from debris, promoting healing.
8. Management of Exposed Dead Bone
- Removal of Loose Bone: Small pieces of necrotic bone that become loose can be removed easily to reduce the risk of infection and promote healing.
9. Sequestration Techniques
- Drilling: As recommended by Hahn and Corgill (1967), drilling multiple holes into vital bone can encourage the sequestration of necrotic bone, facilitating its removal.
10. Sequestrectomy
- Indication: Sequestrectomy involves the surgical removal of necrotic bone (sequestrum) and is preferably performed intraorally to minimize complications associated with skin and vascular damage from radiation.
11. Management of Pathological Fractures
- Fracture Treatment: Although pathological fractures are
not common, they may occur from minor injuries and do not heal readily. The
best treatment involves:
- Excision of necrotic ends of both bone fragments.
- Replacement with a large graft.
- Major soft tissue flap revascularization may be necessary to support reconstruction.
12. Bone Resection
- Indication: Bone resection is performed if there is persistent pain, infection, or pathological fracture. It is preferably done intraorally to avoid the risk of orocutaneous fistula in radiation-compromised skin.
13. Hyperbaric Oxygen (HBO) Therapy
- Adjunctive Treatment: HBO therapy can be a useful adjunct in the management of ORN. While it may not be sufficient alone to support bone graft healing, it can aid in soft tissue graft healing and minimize compartmentalization.