NEET MDS Lessons
Oral and Maxillofacial Surgery
Marsupialization
Marsupialization, also known as decompression, is a surgical procedure used primarily to treat cystic lesions, particularly odontogenic cysts, by creating a surgical window in the wall of the cyst. This technique aims to reduce intracystic pressure, promote the shrinkage of the cyst, and encourage bone fill in the surrounding area.
Key Features of Marsupialization
-
Indication:
- Marsupialization is indicated for large cystic lesions that are not
amenable to complete excision due to their size, location, or proximity
to vital structures. It is commonly used for:
- Odontogenic keratocysts
- Dentigerous cysts
- Radicular cysts
- Other large cystic lesions in the jaw
- Marsupialization is indicated for large cystic lesions that are not
amenable to complete excision due to their size, location, or proximity
to vital structures. It is commonly used for:
-
Surgical Technique:
- Creation of a Surgical Window:
- The procedure begins with the creation of a window in the wall of the cyst. This is typically done through an intraoral approach, where an incision is made in the mucosa overlying the cyst.
- Evacuation of Cystic Content:
- The cystic contents are evacuated, which helps to decrease the intracystic pressure. This reduction in pressure is crucial for promoting the shrinkage of the cyst and facilitating bone fill.
- Suturing the Cystic Lining:
- The remaining cystic lining is sutured to the edge of the oral mucosa. This can be done using continuous sutures or interrupted sutures, depending on the surgeon's preference and the specific clinical situation.
- Creation of a Surgical Window:
-
Benefits:
- Pressure Reduction: By decreasing the intracystic pressure, marsupialization can lead to the gradual reduction in the size of the cyst.
- Bone Regeneration: The procedure promotes bone fill in the area previously occupied by the cyst, which can help restore normal anatomy and function.
- Minimally Invasive: Compared to complete cyst excision, marsupialization is less invasive and can be performed with less morbidity.
-
Postoperative Care:
- Patients may experience some discomfort and swelling following the procedure, which can be managed with analgesics.
- Regular follow-up appointments are necessary to monitor the healing process and assess the reduction in cyst size.
- Oral hygiene is crucial to prevent infection at the surgical site.
-
Outcomes:
- Marsupialization can be an effective treatment for large cystic lesions, leading to significant reduction in size and promoting bone regeneration. In some cases, if the cyst does not resolve completely, further treatment options, including complete excision, may be considered.
Indications for PDL Injection
-
Primary Indications:
- Localized Anesthesia: Effective for one or two mandibular teeth in a quadrant.
- Isolated Teeth Treatment: Useful for treating isolated teeth in both mandibular quadrants, avoiding the need for bilateral inferior alveolar nerve blocks.
- Pediatric Dentistry: Minimizes the risk of self-inflicted injuries due to residual soft tissue anesthesia.
- Contraindications for Nerve Blocks: Safe alternative for patients with conditions like hemophilia where nerve blocks may pose risks.
- Diagnostic Aid: Can assist in the localization of mandibular pain.
-
Advantages:
- Reduced risk of complications associated with nerve blocks.
- Faster onset of anesthesia for localized procedures.
Contraindications and Complications of PDL Injection
-
Contraindications:
- Infection or Severe Inflammation: Risks associated with injecting into infected or inflamed tissues.
- Presence of Primary Teeth: Discuss the findings by Brannstrom and associates regarding enamel hypoplasia or hypomineralization in permanent teeth following PDL injections in primary dentition.
-
Complications:
- Potential for discomfort or pain at the injection site.
- Risk of damage to surrounding structures if not administered correctly.
- Discussion of the rare but serious complications associated with PDL injections.
-
Management of Complications:
- Strategies for minimizing risks and managing complications if they arise.
Surgical Gut (Catgut)
Surgical gut, commonly known as catgut, is a type of absorbable suture material derived from the intestines of animals, primarily sheep and cattle. It has been widely used in surgical procedures due to its unique properties, although it has certain limitations. Below is a detailed overview of surgical gut, including its composition, properties, mechanisms of absorption, and clinical applications.
Composition and Preparation
-
Source: Surgical gut is prepared from:
- Submucosa of Sheep Small Intestine: This layer is rich in collagen, which is essential for the strength and absorbability of the suture.
- Serosal Layer of Cattle Small Intestine: This layer also provides collagen and is used in the production of surgical gut.
-
Collagen Content: The primary component of surgical gut is collagen, which is treated with formaldehyde to enhance its properties. This treatment helps stabilize the collagen structure and prolongs the suture's strength.
-
Suture Characteristics:
- Multifilament Structure: Surgical gut is a capillary multifilament suture, meaning it consists of multiple strands that can absorb fluids, which can be beneficial in certain surgical contexts.
- Smooth Surface: The sutures are machine-ground and polished to yield a relatively smooth surface, resembling that of monofilament sutures.
Sterilization
-
Sterilization Methods:
- Ionizing Radiation: Surgical gut is typically sterilized using ionizing radiation, which effectively kills pathogens without denaturing the protein structure of the collagen.
- Ethylene Oxide: This method can also be used for sterilization, and it prolongs the absorption time of the suture, making it suitable for specific applications.
-
Limitations of Autoclaving: Autoclaving is not suitable for surgical gut because it denatures the protein, leading to a significant loss of tensile strength.
Mechanism of Absorption
The absorption of surgical gut after implantation occurs through a twofold mechanism primarily involving macrophages:
-
Molecular Bond Cleavage:
- Acid hydrolytic and collagenolytic activities cleave the molecular bonds in the collagen structure of the suture.
-
Digestion and Absorption:
- Proteolytic enzymes further digest the collagen, leading to the gradual absorption of the suture material.
- Foreign Body Reaction: Due to its collagenous composition, surgical gut stimulates a significant foreign body reaction in the implanted tissue, which can lead to inflammation.
Rate of Absorption and Loss of Tensile Strength
-
Variability: The rate of absorption and loss of tensile strength varies depending on the implantation site and the surrounding tissue environment.
-
Premature Absorption: Factors that can lead to premature absorption include:
- Exposure to gastric secretions.
- Presence of infection.
- Highly vascularized tissues.
- Conditions in protein-depleted patients.
-
Strength Loss Timeline:
- Medium chromic gut loses about 33% of its original strength after 7 days of implantation and about 67% after 28 days.
Types of Surgical Gut
-
Plain Gut:
- Characteristics: Produces a severe tissue reaction and loses tensile strength rapidly, making it less useful in surgical applications.
- Applications: Limited due to its inflammatory response and quick absorption.
-
Chromic Gut:
- Treatment: Treated with chromium salts to increase tensile strength and resistance to digestion while decreasing tissue reactivity.
- Advantages: Provides a more controlled absorption rate and is more suitable for surgical use compared to plain gut.
Handling Characteristics
- Good Handling: Surgical gut generally exhibits good handling characteristics, allowing for easy manipulation during surgical procedures.
- Weakness When Wet: It swells and weakens when wet, which can affect knot security and overall performance during surgery.
Disadvantages
- Intense Inflammatory Reaction: Surgical gut can provoke a significant inflammatory response, which may complicate healing.
- Variability in Strength Loss: The unpredictable rate of loss of tensile strength can be a concern in surgical applications.
- Capillarity: The multifilament structure can absorb fluids, which may lead to increased tissue reaction and complications.
- Sensitivity Reactions: Some patients, particularly cats, may experience sensitivity reactions to surgical gut.
Clinical Applications
- Use in Surgery: Surgical gut is used in various surgical procedures, particularly in soft tissue closures where absorbable sutures are preferred.
- Adhesion Formation: The use of surgical gut is generally unwarranted in situations where adhesion formation is desired due to its inflammatory properties.
Characteristics of Middle-Third Facial Fractures
Middle-third facial fractures, often referred to as "midfacial fractures," involve the central portion of the face, including the nasal bones, maxilla, and zygomatic arch. These fractures can result from various types of trauma, such as motor vehicle accidents, falls, or physical assaults. The following points highlight the key features and clinical implications of middle-third facial fractures:
1. Oedema of the Middle Third of the Face
-
Rapid Development: Oedema (swelling) in the middle third of the face develops quickly after the injury, leading to a characteristic "balloon" appearance. This swelling is due to the accumulation of fluid in the soft tissues of the face.
-
Absence of Deep Cervical Fascia: The unique anatomical structure of the middle third of the face contributes to this swelling. The absence of deep cervical fascia in this region allows for the rapid spread of fluid, resulting in pronounced oedema.
-
Clinical Presentation: In the early stages following injury, patients with middle-third fractures often present with similar facial appearances due to the characteristic swelling. This can make diagnosis based solely on visual inspection challenging.
2. Lengthening of the Face
-
Displacement of the Middle Third: The downward and backward displacement of the middle third of the facial skeleton can lead to an increase in the overall length of the face. This displacement forces the mandible to open, which can result in a change in occlusion, particularly in the molar region.
-
Gagging of Occlusion: The altered position of the mandible can lead to a malocclusion, where the upper and lower teeth do not align properly. This can cause discomfort and difficulty in chewing or speaking.
-
Delayed Recognition of Lengthening: The true increase in facial length may not be fully appreciated until the initial oedema subsides. As the swelling decreases, the changes in facial structure become more apparent.
3. Nasal Obstruction
-
Blood Clots in the Nares: Following a middle-third fracture, the nares (nostrils) may become obstructed by blood clots, leading to nasal congestion. This can significantly impact the patient's ability to breathe through the nose.
-
Mouth Breathing: Due to the obstruction, patients are often forced to breathe through their mouths, which can lead to additional complications, such as dry mouth and increased risk of respiratory infections.
Osteoradionecrosis
Osteoradionecrosis (ORN) is a condition that can occur following radiation therapy, particularly in the head and neck region, leading to the death of bone tissue due to compromised blood supply. The management of ORN is complex and requires a multidisciplinary approach. Below is a comprehensive overview of the treatment strategies for osteoradionecrosis.
1. Debridement
- Purpose: Surgical debridement involves the removal of necrotic and infected tissue to promote healing and prevent the spread of infection.
- Procedure: This may include the excision of necrotic bone and soft tissue, allowing for better access to healthy tissue.
2. Control of Infection
- Antibiotic Therapy: Broad-spectrum antibiotics are administered to control any acute infections present. However, it is important to note that antibiotics may not penetrate necrotic bone effectively due to poor circulation.
- Monitoring: Regular assessment of infection status is crucial to adjust antibiotic therapy as needed.
3. Hospitalization
- Indication: Patients with severe ORN or those requiring surgical intervention may need hospitalization for close monitoring and management.
4. Supportive Treatment
- Hydration: Fluid therapy is essential to maintain hydration and support overall health.
- Nutritional Support: A high-protein and vitamin-rich diet is recommended to promote healing and recovery.
5. Pain Management
- Analgesics: Both narcotic and non-narcotic analgesics are used to manage pain effectively.
- Regional Anesthesia: Techniques such as bupivacaine (Marcaine) injections, alcohol nerve blocks, nerve avulsion, and rhizotomy may be employed for more effective pain control.
6. Good Oral Hygiene
- Oral Rinses: Regular use of oral rinses, such as 1% sodium fluoride gel, 1% chlorhexidine gluconate, and plain water, helps prevent radiation-induced caries and manage xerostomia and mucositis. These rinses can enhance local immune responses and antimicrobial activity.
7. Frequent Irrigations of Wounds
- Purpose: Regular irrigation of the affected areas helps to keep the wound clean and free from debris, promoting healing.
8. Management of Exposed Dead Bone
- Removal of Loose Bone: Small pieces of necrotic bone that become loose can be removed easily to reduce the risk of infection and promote healing.
9. Sequestration Techniques
- Drilling: As recommended by Hahn and Corgill (1967), drilling multiple holes into vital bone can encourage the sequestration of necrotic bone, facilitating its removal.
10. Sequestrectomy
- Indication: Sequestrectomy involves the surgical removal of necrotic bone (sequestrum) and is preferably performed intraorally to minimize complications associated with skin and vascular damage from radiation.
11. Management of Pathological Fractures
- Fracture Treatment: Although pathological fractures are
not common, they may occur from minor injuries and do not heal readily. The
best treatment involves:
- Excision of necrotic ends of both bone fragments.
- Replacement with a large graft.
- Major soft tissue flap revascularization may be necessary to support reconstruction.
12. Bone Resection
- Indication: Bone resection is performed if there is persistent pain, infection, or pathological fracture. It is preferably done intraorally to avoid the risk of orocutaneous fistula in radiation-compromised skin.
13. Hyperbaric Oxygen (HBO) Therapy
- Adjunctive Treatment: HBO therapy can be a useful adjunct in the management of ORN. While it may not be sufficient alone to support bone graft healing, it can aid in soft tissue graft healing and minimize compartmentalization.
Enophthalmos
Enophthalmos is a condition characterized by the inward sinking of the eye into the orbit (the bony socket that holds the eye). It is often a troublesome consequence of fractures involving the zygomatic complex (the cheekbone area).
Causes of Enophthalmos
Enophthalmos can occur due to several factors following an injury:
-
Loss of Orbital Volume:
- There may be a decrease in the volume of the contents within the orbit, which can happen if soft tissues herniate into the maxillary sinus or through the medial wall of the orbit.
-
Fractures of the Orbital Walls:
- Fractures in the walls of the orbit can increase the volume of the bony orbit. This can occur with lateral and inferior displacement of the zygoma or disruption of the inferior and lateral orbital walls. A quantitative CT scan can help visualize these changes.
-
Loss of Ligament Support:
- The ligaments that support the eye may be damaged, contributing to the sinking of the eye.
-
Post-Traumatic Changes:
- After an injury, fibrosis (the formation of excess fibrous connective tissue), scar contraction, and fat atrophy (loss of fat in the orbit) can occur, leading to enophthalmos.
-
Combination of Factors:
- Often, enophthalmos results from a combination of the above factors.
Diagnosis
- Acute Cases: In the early stages after an injury, diagnosing enophthalmos can be challenging. This is because swelling (edema) of the surrounding soft tissues can create a false appearance of enophthalmos, making it seem like the eye is more sunken than it actually is.
Dry Socket (Alveolar Osteitis)
Dry socket, also known as alveolar osteitis, is a common complication that can occur after tooth extraction, particularly after the removal of mandibular molars. It is characterized by delayed postoperative pain due to the loss of the blood clot that normally forms in the extraction socket.
Key Features
-
Pathophysiology:
- After a tooth extraction, a blood clot forms in the socket, which is essential for healing. In dry socket, this clot is either dislodged or dissolves prematurely, exposing the underlying bone and nerve endings.
- The initial appearance of the clot may be dirty gray, and as it disintegrates, the socket may appear gray or grayish-yellow, indicating the presence of bare bone without granulation tissue.
-
Symptoms:
- Symptoms of dry socket typically begin 3 to 5 days after
the extraction. Patients may experience:
- Severe pain in the extraction site that can radiate to the ear, eye, or neck.
- A foul taste or odor in the mouth due to necrotic tissue.
- Visible empty socket with exposed bone.
- Symptoms of dry socket typically begin 3 to 5 days after
the extraction. Patients may experience:
-
Local Therapy:
- Management of dry socket involves local treatment to alleviate pain
and promote healing:
- Irrigation: The socket is irrigated with a warm sterile isotonic saline solution or a dilute solution of hydrogen peroxide to remove necrotic material and debris.
- Application of Medications: After irrigation, an obtundent (pain-relieving) agent or a topical anesthetic may be applied to the socket to provide symptomatic relief.
- Management of dry socket involves local treatment to alleviate pain
and promote healing:
-
Prevention:
- To reduce the risk of developing dry socket, patients are often
advised to:
- Avoid smoking and using straws for a few days post-extraction, as these can dislodge the clot.
- Follow postoperative care instructions provided by the dentist or oral surgeon.
- To reduce the risk of developing dry socket, patients are often
advised to: