Talk to us?

Oral and Maxillofacial Surgery - NEETMDS- courses
Oral and Maxillofacial Surgery

Indications for PDL Injection

  1. Primary Indications:

    • Localized Anesthesia: Effective for one or two mandibular teeth in a quadrant.
    • Isolated Teeth Treatment: Useful for treating isolated teeth in both mandibular quadrants, avoiding the need for bilateral inferior alveolar nerve blocks.
    • Pediatric Dentistry: Minimizes the risk of self-inflicted injuries due to residual soft tissue anesthesia.
    • Contraindications for Nerve Blocks: Safe alternative for patients with conditions like hemophilia where nerve blocks may pose risks.
    • Diagnostic Aid: Can assist in the localization of mandibular pain.
  2. Advantages:

    • Reduced risk of complications associated with nerve blocks.
    • Faster onset of anesthesia for localized procedures.

Contraindications and Complications of PDL Injection

  1. Contraindications:

    • Infection or Severe Inflammation: Risks associated with injecting into infected or inflamed tissues.
    • Presence of Primary Teeth: Discuss the findings by Brannstrom and associates regarding enamel hypoplasia or hypomineralization in permanent teeth following PDL injections in primary dentition.
  2. Complications:

    • Potential for discomfort or pain at the injection site.
    • Risk of damage to surrounding structures if not administered correctly.
    • Discussion of the rare but serious complications associated with PDL injections.
  3. Management of Complications:

    • Strategies for minimizing risks and managing complications if they arise.

Nasogastric Tube (Ryles Tube)

nasogastric tube (NG tube), commonly referred to as a Ryles tube, is a medical device used for various purposes, primarily involving the stomach. It is a long, hollow tube made of polyvinyl chloride (PVC) with one blunt end and multiple openings along its length. The tube is designed to be inserted through the nostril, down the esophagus, and into the stomach.

Description and Insertion

  • Structure: The NG tube has a blunt end that is inserted into the nostril, and it features multiple openings to allow for the passage of fluids and air. The open end of the tube is used for feeding or drainage.

  • Insertion Technique:

    1. The tube is gently passed through one of the nostrils and advanced through the nasopharynx and into the esophagus.
    2. Care is taken to ensure that the tube follows the natural curvature of the nasal passages and esophagus.
    3. Once the tube is in place, its position must be confirmed before any feeds or medications are administered.
  • Position Confirmation:

    • To check the position of the tube, air is pushed into the tube using a syringe.
    • The presence of air in the stomach is confirmed by auscultation with a stethoscope, listening for the characteristic "whoosh" sound of air entering the stomach.
    • Only after confirming that the tube is correctly positioned in the stomach should feeding or medication administration begin.
  • Securing the Tube: The tube is fixed to the nose using sticking plaster or adhesive tape to prevent displacement.

Uses of Nasogastric Tube

  1. Nutritional Support:

    • Enteral Feeding: The primary use of a nasogastric tube is to provide nutritional support to patients who are unable to take oral feeds due to various reasons, such as:
      • Neurological conditions (e.g., stroke, coma)
      • Surgical procedures affecting the gastrointestinal tract
      • Severe dysphagia (difficulty swallowing)
  2. Gastric Lavage:

    • Postoperative Care: NG tubes can be used for gastric lavage to flush out blood, fluids, or other contents from the stomach after surgery. This is particularly important in cases where there is a risk of aspiration or when the stomach needs to be emptied.
    • Poisoning: In cases of poisoning or overdose, gastric lavage may be performed using an NG tube to remove toxic substances from the stomach. This procedure should be done promptly and under medical supervision.
  3. Decompression:

    • Relieving Distension: The NG tube can also be used to decompress the stomach in cases of bowel obstruction or ileus, allowing for the removal of excess gas and fluid.
  4. Medication Administration:

    • The tube can be used to administer medications directly into the stomach for patients who cannot take oral medications.

Considerations and Complications

  • Patient Comfort: Insertion of the NG tube can be uncomfortable for patients, and proper technique should be used to minimize discomfort.

  • Complications: Potential complications include:

    • Nasal and esophageal irritation or injury
    • Misplacement of the tube into the lungs, leading to aspiration
    • Sinusitis or nasal ulceration with prolonged use
    • Gastrointestinal complications, such as gastric erosion or ulceration

Augmentation of the Inferior Border of the Mandible

Mandibular augmentation refers to surgical procedures aimed at increasing the height or contour of the mandible, particularly the inferior border. This type of augmentation is often performed to improve the support for dentures, enhance facial aesthetics, or correct deformities. Below is an overview of the advantages and disadvantages of augmenting the inferior border of the mandible.

Advantages of Inferior Border Augmentation

  1. Preservation of the Vestibule:

    • The procedure does not obliterate the vestibule, allowing for the immediate placement of an interim denture. This is particularly beneficial for patients who require prosthetic support soon after surgery.
  2. No Change in Vertical Dimension:

    • Augmentation of the inferior border does not alter the vertical dimension of the occlusion, which is crucial for maintaining proper bite relationships and avoiding complications associated with changes in jaw alignment.
  3. Facilitation of Secondary Vestibuloplasty:

    • The procedure makes subsequent vestibuloplasty easier. By maintaining the vestibular space, it allows for better access and manipulation during any future surgical interventions aimed at deepening the vestibule.
  4. Protection of the Graft:

    • The graft used for augmentation is not subjected to direct masticatory forces, reducing the risk of graft failure and promoting better healing. This is particularly important in ensuring the longevity and stability of the augmentation.

Disadvantages of Inferior Border Augmentation

  1. Extraoral Scar:

    • The procedure typically involves an incision that can result in an extraoral scar. This may be a cosmetic concern for some patients, especially if the scar is prominent or does not heal well.
  2. Potential Alteration of Facial Appearance:

    • If the submental and submandibular tissues are not initially loose, there is a risk of altering the facial appearance. Tight or inelastic tissues may lead to distortion or asymmetry postoperatively.
  3. Limited Change in Superior Surface Shape:

    • The augmentation primarily affects the inferior border of the mandible and may not significantly change the shape of the superior surface of the mandible. This limitation can affect the overall contour and aesthetics of the jawline.
  4. Surgical Risks:

    • As with any surgical procedure, there are inherent risks, including infection, bleeding, and complications related to anesthesia. Additionally, there may be risks associated with the grafting material used.

Management and Treatment of Le Fort Fractures

Le Fort fractures require careful assessment and management to restore facial anatomy, function, and aesthetics. The treatment approach may vary depending on the type and severity of the fracture.

Le Fort I Fracture

Initial Assessment:

  • Airway Management: Ensure the airway is patent, especially if there is significant swelling or potential for airway compromise.
  • Neurological Assessment: Evaluate for any signs of neurological injury.

Treatment:

  1. Non-Surgical Management:

    • Observation: In cases of non-displaced fractures, close monitoring may be sufficient.
    • Pain Management: Analgesics to manage pain.
  2. Surgical Management:

    • Open Reduction and Internal Fixation (ORIF): Indicated for displaced fractures to restore occlusion and facial symmetry.
    • Maxillomandibular Fixation (MMF): May be used temporarily to stabilize the fracture during healing.
  3. Postoperative Care:

    • Follow-Up: Regular follow-up to monitor healing and occlusion.
    • Oral Hygiene: Emphasize the importance of maintaining oral hygiene to prevent infection.

Le Fort II Fracture

Initial Assessment:

  • Airway Management: Critical due to potential airway compromise.
  • Neurological Assessment: Evaluate for any signs of neurological injury.

Treatment:

  1. Non-Surgical Management:

    • Observation: For non-displaced fractures, close monitoring may be sufficient.
    • Pain Management: Analgesics to manage pain.
  2. Surgical Management:

    • Open Reduction and Internal Fixation (ORIF): Required for displaced fractures to restore occlusion and facial symmetry.
    • Maxillomandibular Fixation (MMF): May be used to stabilize the fracture during healing.
  3. Postoperative Care:

    • Follow-Up: Regular follow-up to monitor healing and occlusion.
    • Oral Hygiene: Emphasize the importance of maintaining oral hygiene to prevent infection.

Le Fort III Fracture

Initial Assessment:

  • Airway Management: Critical due to potential airway compromise and significant facial swelling.
  • Neurological Assessment: Evaluate for any signs of neurological injury.

Treatment:

  1. Non-Surgical Management:

    • Observation: In cases of non-displaced fractures, close monitoring may be sufficient.
    • Pain Management: Analgesics to manage pain.
  2. Surgical Management:

    • Open Reduction and Internal Fixation (ORIF): Essential for restoring facial anatomy and occlusion. This may involve complex reconstruction of the midface.
    • Maxillomandibular Fixation (MMF): Often used to stabilize the fracture during healing.
    • Craniofacial Reconstruction: In cases of severe displacement or associated injuries, additional reconstructive procedures may be necessary.
  3. Postoperative Care:

    • Follow-Up: Regular follow-up to monitor healing, occlusion, and any complications.
    • Oral Hygiene: Emphasize the importance of maintaining oral hygiene to prevent infection.
    • Physical Therapy: May be necessary to restore function and mobility.

General Considerations for All Le Fort Fractures

  • Antibiotic Prophylaxis: Consideration for prophylactic antibiotics to prevent infection, especially in open fractures.
  • Nutritional Support: Ensure adequate nutrition, especially if oral intake is compromised.
  • Psychological Support: Address any psychological impact of facial injuries, especially in pediatric patients.

Champy Technique of Fracture Stabilization

The Champy technique, developed by Champy et al. in the mid-1970s, is a method of fracture stabilization that utilizes non-compression monocortical miniplates applied as tension bands. This technique is particularly relevant in the context of mandibular fractures and is based on biomechanical principles that optimize the stability and healing of the bone.

Key Principles of the Champy Technique

  1. Biomechanical Considerations:

    • Tensile and Compressive Stresses: Biomechanical studies have shown that tensile stresses occur in the upper border of the mandible, while compressive stresses are found in the lower border. This understanding is crucial for the placement of plates.
    • Bending and Torsional Forces: The forces acting on the mandible primarily produce bending movements. In the symphysis and parasymphysis regions, torsional forces are more significant than bending moments.
  2. Ideal Osteosynthesis Line:

    • Champy et al. established the "ideal osteosynthesis line" at the base of the alveolar process. This line is critical for the effective placement of plates to ensure stability during the healing process.
    • Plate Placement:
      • Anterior Region: In the area between the mental foramina, a subapical plate is placed, and an additional plate is positioned near the lower border of the mandible to counteract torsional forces.
      • Posterior Region: Behind the mental foramen, the plate is applied just below the dental roots and above the inferior alveolar nerve.
      • Angle of Mandible: The plate is placed on the broad surface of the external oblique ridge.
  3. Tension Band Principle:

    • The use of miniplates as tension bands allows for the distribution of forces across the fracture site, enhancing stability and promoting healing.

Treatment Steps

  1. Reduction:

    • The first step in fracture treatment is the accurate reduction of the fracture fragments to restore normal anatomy.
  2. Stabilization:

    • Following reduction, stabilization is achieved using the Champy technique, which involves the application of miniplates in accordance with the biomechanical principles outlined above.
  3. Maxillomandibular Fixation (MMF):

    • MMF is often used as a standard method for both reduction and stabilization, particularly in cases where additional support is needed.
  4. External Fixation:

    • In cases of atrophic edentulous mandibular fractures, extensive soft tissue injuries, severe communication, or infected fractures, external fixation may be considered.

Classification of Internal Fixation Techniques

  • Absolute Stability:

    • Rigid internal fixation methods, such as compression plates, lag screws, and the tension band principle, fall under this category. These techniques provide strong stabilization but may compromise blood supply to the bone.
  • Relative Stability:

    • Techniques such as bridging, biologic (flexible) fixation, and the Champy technique are classified as relative stability methods. These techniques allow for some movement at the fracture site, which can promote healing by maintaining blood supply to the cortical bone.

Biologic Fixation

  • New Paradigm:
    • Biologic fixation represents a shift in fracture treatment philosophy, emphasizing that absolute stability is not always beneficial. Allowing for some movement at the fracture site can enhance blood supply and promote healing.
  • Improved Blood Supply:
    • Not pressing the plate against the bone helps maintain blood supply to the cortical bone and prevents the formation of early temporary porosity, which can be detrimental to healing.

Airway Management in Medical Emergencies: Tracheostomy and Cricothyrotomy

 

1. Establishing a Patent Airway

  • Immediate Goal: The primary objective in any emergency involving airway obstruction is to ensure that the patient has a clear and patent airway to facilitate breathing.
  • Procedures Available: Various techniques exist to achieve this, ranging from nonsurgical methods to surgical interventions.

2. Surgical Interventions

A. Tracheostomy

  • A tracheostomy is a surgical procedure that involves creating an opening in the trachea (windpipe) through the neck to establish an airway.
  • Indications:
    • Prolonged mechanical ventilation.
    • Severe upper airway obstruction (e.g., due to tumors, trauma, or swelling).
    • Need for airway protection in patients with impaired consciousness or neuromuscular disorders.
  • Procedure:
    • An incision is made in the skin over the trachea, A tracheostomy incision is made between the second and third tracheal rings, which is below the larynxThe incision is usually 2–3 cm long and can be vertical or horizontaland the trachea is then opened to insert a tracheostomy tube.
    • This procedure requires considerable knowledge of anatomy and technical skill to perform safely and effectively.

B. Cricothyrotomy

  • Definition: A cricothyrotomy is a surgical procedure that involves making an incision through the skin over the cricothyroid membrane (located between the thyroid and cricoid cartilages) to establish an airway.
  • Indications:
    • Emergency situations where rapid access to the airway is required, especially when intubation is not possible.
    • Situations where facial or neck trauma makes traditional intubation difficult.
  • Procedure:
    • A vertical incision is made over the cricothyroid membrane, and a tube is inserted directly into the trachea.
    • This procedure is typically quicker and easier to perform than a tracheostomy, making it suitable for emergency situations.

3. Nonsurgical Techniques for Airway Management

A. Abdominal Thrust (Heimlich Maneuver)

  •  The Heimlich maneuver is a lifesaving technique used to relieve choking caused by a foreign body obstructing the airway.
  • Technique:
    • The rescuer stands behind the patient and wraps their arms around the patient's waist.
    • A fist is placed just above the navel, and quick, inward and upward thrusts are applied to create pressure in the abdomen, which can help expel the foreign object.
  • Indications: This technique is the first-line approach for conscious patients experiencing airway obstruction.

B. Back Blows and Chest Thrusts

  • Back Blows:
    • The rescuer delivers firm blows to the back between the shoulder blades using the heel of the hand. This can help dislodge an object obstructing the airway.
  • Chest Thrusts:
    • For patients who are obese or pregnant, chest thrusts may be more effective. The rescuer stands behind the patient and performs thrusts to the chest, similar to the Heimlich maneuver.

Overview of Infective Endocarditis (IE):

  • Infective endocarditis is an inflammation of the inner lining of the heart, often caused by bacterial infection.
  • Certain cardiac conditions increase the risk of developing IE, particularly during dental procedures that may introduce bacteria into the bloodstream.

High-Risk Cardiac Conditions: Antibiotic prophylaxis is recommended for patients with the following high-risk cardiac conditions:

  • Prosthetic cardiac valves
  • History of infective endocarditis
  • Cyanotic congenital heart disease
  • Surgically constructed systemic-pulmonary shunts
  • Other congenital heart defects
  • Acquired valvular dysfunction
  • Hypertrophic cardiomyopathy
  • Mitral valve prolapse with regurgitation

Moderate-Risk Cardiac Conditions:

  • Mitral valve prolapse without regurgitation
  • Previous rheumatic fever with valvular dysfunction

Negligible Risk Conditions:

  • Coronary bypass grafts
  • Physiological or functional heart murmurs

Prophylaxis Recommendations

When to Administer Prophylaxis:

  • Prophylaxis is indicated for dental procedures that involve:
    • Manipulation of gingival tissue
    • Perforation of the oral mucosa
    • Procedures that may cause bleeding

Antibiotic Regimens:

  • The standard prophylactic regimen is a single dose administered 30-60 minutes before the procedure:
    • Amoxicillin:
      • Adult dose: 2 g orally
      • Pediatric dose: 50 mg/kg orally (maximum 2 g)
    • Ampicillin:
      • Adult dose: 2 g IV/IM
      • Pediatric dose: 50 mg/kg IV/IM (maximum 2 g)
    • Clindamycin (for penicillin-allergic patients):
      • Adult dose: 600 mg orally
      • Pediatric dose: 20 mg/kg orally (maximum 600 mg)
    • Cephalexin (for penicillin-allergic patients):
      • Adult dose: 2 g orally
      • Pediatric dose: 50 mg/kg orally (maximum 2 g)

Explore by Exams