Talk to us?

Oral and Maxillofacial Surgery - NEETMDS- courses
Oral and Maxillofacial Surgery

Primary Bone Healing and Rigid Fixation

Primary bone healing is a process that occurs when bony fragments are compressed against each other, allowing for direct healing without the formation of a callus. This type of healing is characterized by the migration of osteocytes across the fracture line and is facilitated by rigid fixation techniques. Below is a detailed overview of the concept of primary bone healing, the mechanisms involved, and examples of rigid fixation methods.

Concept of Compression

  • Compression of Bony Fragments: In primary bone healing, the bony fragments are tightly compressed against each other. This compression is crucial as it allows for the direct contact of the bone surfaces, which is necessary for the healing process.

  • Osteocyte Migration: Under conditions of compression, osteocytes (the bone cells responsible for maintaining bone tissue) can migrate across the fracture line. This migration is essential for the healing process, as it facilitates the integration of the bone fragments.

Characteristics of Primary Bone Healing

  • Absence of Callus Formation: Unlike secondary bone healing, which involves the formation of a callus (a soft tissue bridge that eventually hardens into bone), primary bone healing occurs without callus formation. This is due to the rigid fixation that prevents movement between the fragments.

  • Haversian Remodeling: The healing process in primary bone healing involves Haversian remodeling, where the bone is remodeled along the lines of stress. This process allows for the restoration of the bone's structural integrity and strength.

  • Requirements for Primary Healing:

    • Absolute Immobilization: Rigid fixation must provide sufficient stability to prevent any movement (interfragmentary mobility) between the osseous fragments during the healing period.
    • Minimal Gap: There should be minimal distance (gap) between the fragments to facilitate direct contact and healing.

Examples of Rigid Fixation in the Mandible

  1. Lag Screws: The use of two lag screws across a fracture provides strong compression and stability, allowing for primary bone healing.

  2. Bone Plates:

    • Reconstruction Bone Plates: These plates are applied with at least three screws on each side of the fracture to ensure adequate fixation and stability.
    • Compression Plates: A large compression plate can be used across the fracture to maintain rigid fixation and prevent movement.
  3. Proper Application: When these fixation methods are properly applied, they create a stable environment that is conducive to primary bone healing. The rigidity of the fixation prevents interfragmentary mobility, which is essential for the peculiar type of bone healing that occurs without callus formation.

Induction Agents in Anesthesia

Propofol is a widely used intravenous anesthetic agent known for its rapid onset and quick recovery profile, making it particularly suitable for outpatient surgeries. It is favored for its ability to provide a clear-headed recovery with a low incidence of postoperative nausea and vomiting. Below is a summary of preferred induction agents for various clinical situations, including the use of propofol and alternatives based on specific patient needs.

Propofol

  • Use: Propofol is the agent of choice for most outpatient surgeries due to its rapid onset and quick recovery time.
  • Advantages:
    • Provides a smooth induction and emergence from anesthesia.
    • Low incidence of nausea and vomiting, which is beneficial for outpatient settings.
    • Allows for quick discharge of patients after surgery.

Preferred Induction Agents in Specific Conditions

  1. Neonates:

    • AgentSevoflurane (Inhalation)
    • Rationale: Sevoflurane is preferred for induction in neonates due to its rapid onset and minimal airway irritation. It is well-tolerated and allows for smooth induction in this vulnerable population.
  2. Neurosurgery:

    • AgentsIsoflurane with Thiopentone/Propofol/Etomidate
    • Additional Consideration: Hyperventilation is often employed to maintain arterial carbon dioxide tension (PaCO2) between 25-30 mm Hg. This helps to reduce intracranial pressure and improve surgical conditions.
    • Rationale: Isoflurane is commonly used for its neuroprotective properties, while thiopentone, propofol, or etomidate can be used for induction based on the specific needs of the patient.
  3. Coronary Artery Disease & Hypertension:

    • AgentsBarbiturates, Benzodiazepines, Propofol, Etomidate
    • Rationale: All these agents are considered equally safe for patients with coronary artery disease and hypertension. The choice may depend on the specific clinical scenario, patient comorbidities, and the desired depth of anesthesia.
  4. Day Care Surgery:

    • AgentPropofol
    • Rationale: Propofol is preferred for day care surgeries due to its rapid recovery profile, allowing patients to be discharged quickly after the procedure. Its low incidence of postoperative nausea and vomiting further supports its use in outpatient settings.

Submasseteric Space Infection

Submasseteric space infection refers to an infection that occurs in the submasseteric space, which is located beneath the masseter muscle. This space is clinically significant in the context of dental infections, particularly those arising from the lower third molars (wisdom teeth) or other odontogenic sources. Understanding the anatomy and potential spread of infections in this area is crucial for effective diagnosis and management.

Anatomy of the Submasseteric Space

  1. Location:

    • The submasseteric space is situated beneath the masseter muscle, which is a major muscle involved in mastication (chewing).
    • This space is bordered superiorly by the masseter muscle and inferiorly by the lower border of the ramus of the mandible.
  2. Boundaries:

    • Inferior Boundary: The extension of an abscess or infection inferiorly is limited by the firm attachment of the masseter muscle to the lower border of the ramus of the mandible. This attachment creates a barrier that can restrict the spread of infection downward.
    • Anterior Boundary: The forward spread of infection beyond the anterior border of the ramus is restricted by the anterior tail of the tendon of the temporalis muscle, which inserts into the anterior border of the ramus. This anatomical feature helps to contain infections within the submasseteric space.
  3. Posterior Boundary: The posterior limit of the submasseteric space is generally defined by the posterior border of the ramus of the mandible.

Clinical Implications

  1. Sources of Infection:

    • Infections in the submasseteric space often arise from odontogenic sources, such as:
      • Pericoronitis associated with impacted lower third molars.
      • Dental abscesses from other teeth in the mandible.
      • Periodontal infections.
  2. Symptoms:

    • Patients with submasseteric space infections may present with:
      • Swelling and tenderness in the area of the masseter muscle.
      • Limited mouth opening (trismus) due to muscle spasm or swelling.
      • Pain that may radiate to the ear or temporomandibular joint (TMJ).
      • Fever and systemic signs of infection in more severe cases.
  3. Diagnosis:

    • Diagnosis is typically made through clinical examination and imaging studies, such as panoramic radiographs or CT scans, to assess the extent of the infection and its relationship to surrounding structures.
  4. Management:

    • Treatment of submasseteric space infections usually involves:
      • Antibiotic Therapy: Broad-spectrum antibiotics are often initiated to control the infection.
      • Surgical Intervention: Drainage of the abscess may be necessary, especially if there is significant swelling or if the patient is not responding to conservative management. Incision and drainage can be performed intraorally or extraorally, depending on the extent of the infection.
      • Management of the Source: Addressing the underlying dental issue, such as extraction of an impacted tooth or treatment of a dental abscess, is essential to prevent recurrence.

Rigid Fixation

Rigid fixation is a surgical technique used to stabilize fractured bones.

Types of Rigid Fixation

Rigid fixation can be achieved using various types of plates and devices, including:

  1. Simple Non-Compression Bone Plates:

    • These plates provide stability without applying compressive forces across the fracture site.
  2. Mini Bone Plates:

    • Smaller plates designed for use in areas where space is limited, providing adequate stabilization for smaller fractures.
  3. Compression Plates:

    • These plates apply compressive forces across the fracture site, promoting bone healing by encouraging contact between the fracture fragments.
  4. Reconstruction Plates:

    • Used for complex fractures or reconstructions, these plates can be contoured to fit the specific anatomy of the fractured bone.

Transosseous Wiring (Intraosseous Wiring)

Transosseous wiring is a traditional and effective method for the fixation of jaw bone fractures. It involves the following steps:

  1. Technique:

    • Holes are drilled in the bony fragments on either side of the fracture line.
    • A length of 26-gauge stainless steel wire is passed through the holes and across the fracture.
  2. Reduction:

    • The fracture must be reduced independently, ensuring that the teeth are in occlusion before securing the wire.
  3. Twisting the Wire:

    • After achieving proper alignment, the free ends of the wire are twisted to secure the fracture.
    • The twisted ends are cut short and tucked into the nearest drill hole to prevent irritation to surrounding tissues.
  4. Variations:

    • The single strand wire fixation in a horizontal manner is the simplest form of intraosseous wiring, but it can be modified in various ways depending on the specific needs of the fracture and the patient.

Other fixation techniques

Open reduction and internal fixation (ORIF):
Surgical exposure of the fracture site, followed by reduction and fixation with plates, screws, or nails

Closed reduction and immobilization (CRII):
Manipulation of the bone fragments into alignment without surgical exposure, followed by cast or splint immobilization

Intramedullary nailing:
Insertion of a metal rod (nail) into the medullary canal of the bone to stabilize long bone fractures

External fixation:
A device with pins inserted through the bone fragments and connected to an external frame to provide stability
 
Tension band wiring:
A technique using wires to apply tension across a fracture site, particularly useful for avulsion fractures

 

 

--------------------------------

Overview of Infective Endocarditis (IE):

  • Infective endocarditis is an inflammation of the inner lining of the heart, often caused by bacterial infection.
  • Certain cardiac conditions increase the risk of developing IE, particularly during dental procedures that may introduce bacteria into the bloodstream.

High-Risk Cardiac Conditions: Antibiotic prophylaxis is recommended for patients with the following high-risk cardiac conditions:

  • Prosthetic cardiac valves
  • History of infective endocarditis
  • Cyanotic congenital heart disease
  • Surgically constructed systemic-pulmonary shunts
  • Other congenital heart defects
  • Acquired valvular dysfunction
  • Hypertrophic cardiomyopathy
  • Mitral valve prolapse with regurgitation

Moderate-Risk Cardiac Conditions:

  • Mitral valve prolapse without regurgitation
  • Previous rheumatic fever with valvular dysfunction

Negligible Risk Conditions:

  • Coronary bypass grafts
  • Physiological or functional heart murmurs

Prophylaxis Recommendations

When to Administer Prophylaxis:

  • Prophylaxis is indicated for dental procedures that involve:
    • Manipulation of gingival tissue
    • Perforation of the oral mucosa
    • Procedures that may cause bleeding

Antibiotic Regimens:

  • The standard prophylactic regimen is a single dose administered 30-60 minutes before the procedure:
    • Amoxicillin:
      • Adult dose: 2 g orally
      • Pediatric dose: 50 mg/kg orally (maximum 2 g)
    • Ampicillin:
      • Adult dose: 2 g IV/IM
      • Pediatric dose: 50 mg/kg IV/IM (maximum 2 g)
    • Clindamycin (for penicillin-allergic patients):
      • Adult dose: 600 mg orally
      • Pediatric dose: 20 mg/kg orally (maximum 600 mg)
    • Cephalexin (for penicillin-allergic patients):
      • Adult dose: 2 g orally
      • Pediatric dose: 50 mg/kg orally (maximum 2 g)

Structure of Orbital Walls

The orbit is a complex bony structure that houses the eye and its associated structures. It is composed of several walls, each with distinct anatomical features and clinical significance. Here’s a detailed overview of the structure of the orbital walls:

1. Lateral Wall

  • Composition: The lateral wall of the orbit is primarily formed by two bones:
    • Zygomatic Bone: This bone contributes significantly to the lateral aspect of the orbit.
    • Greater Wing of the Sphenoid: This bone provides strength and stability to the lateral wall.
  • Orientation: The lateral wall is inclined at approximately 45 degrees to the long axis of the skull, which is important for the positioning of the eye and the alignment of the visual axis.

2. Medial Wall

  • Composition: The medial wall is markedly different from the lateral wall and is primarily formed by:
    • Orbital Plate of the Ethmoid Bone: This plate is very thin and fragile, making the medial wall susceptible to injury.
  • Height and Orientation: The medial wall is about half the height of the lateral wall. It is aligned parallel to the antero-posterior axis (median plane) of the skull and meets the floor of the orbit at an angle of about 45 degrees.
  • Fragility: The medial wall is extremely fragile due to its proximity to:
    • Ethmoid Air Cells: These air-filled spaces can compromise the integrity of the medial wall.
    • Nasal Cavity: The close relationship with the nasal cavity further increases the risk of injury.

3. Roof of the Orbit

  • Composition: The roof is formed by the frontal bone and is reinforced laterally by the greater wing of the sphenoid.
  • Thickness: While the roof is thin, it is structurally reinforced, which helps protect the contents of the orbit.
  • Fracture Patterns: Fractures of the roof often involve the frontal bone and tend to extend medially. Such fractures can lead to complications, including orbital hemorrhage or involvement of the frontal sinus.

4. Floor of the Orbit

  • Composition: The floor is primarily formed by the maxilla, with contributions from the zygomatic and palatine bones.
  • Thickness: The floor is very thin, typically measuring about 0.5 mm in thickness, making it particularly vulnerable to fractures.
  • Clinical Significance:
    • Blow-Out Fractures: The floor is commonly involved in "blow-out" fractures, which occur when a blunt force impacts the eye, causing the floor to fracture and displace. These fractures can be classified as:
      • Pure Blow-Out Fractures: Isolated fractures of the orbital floor.
      • Impure Blow-Out Fractures: Associated with fractures in the zygomatic area.
    • Infraorbital Groove and Canal: The presence of the infraorbital groove and canal further weakens the floor. The infraorbital nerve and vessels run through this canal, making them susceptible to injury during fractures. Compression, contusion, or direct penetration from bone spicules can lead to sensory deficits in the distribution of the infraorbital nerve.

Indications for PDL Injection

  1. Primary Indications:

    • Localized Anesthesia: Effective for one or two mandibular teeth in a quadrant.
    • Isolated Teeth Treatment: Useful for treating isolated teeth in both mandibular quadrants, avoiding the need for bilateral inferior alveolar nerve blocks.
    • Pediatric Dentistry: Minimizes the risk of self-inflicted injuries due to residual soft tissue anesthesia.
    • Contraindications for Nerve Blocks: Safe alternative for patients with conditions like hemophilia where nerve blocks may pose risks.
    • Diagnostic Aid: Can assist in the localization of mandibular pain.
  2. Advantages:

    • Reduced risk of complications associated with nerve blocks.
    • Faster onset of anesthesia for localized procedures.

Contraindications and Complications of PDL Injection

  1. Contraindications:

    • Infection or Severe Inflammation: Risks associated with injecting into infected or inflamed tissues.
    • Presence of Primary Teeth: Discuss the findings by Brannstrom and associates regarding enamel hypoplasia or hypomineralization in permanent teeth following PDL injections in primary dentition.
  2. Complications:

    • Potential for discomfort or pain at the injection site.
    • Risk of damage to surrounding structures if not administered correctly.
    • Discussion of the rare but serious complications associated with PDL injections.
  3. Management of Complications:

    • Strategies for minimizing risks and managing complications if they arise.

Explore by Exams