NEET MDS Lessons
Oral and Maxillofacial Surgery
Rigid Fixation
Rigid fixation is a surgical technique used to stabilize fractured bones.
Types of Rigid Fixation
Rigid fixation can be achieved using various types of plates and devices, including:
-
Simple Non-Compression Bone Plates:
- These plates provide stability without applying compressive forces across the fracture site.
-
Mini Bone Plates:
- Smaller plates designed for use in areas where space is limited, providing adequate stabilization for smaller fractures.
-
Compression Plates:
- These plates apply compressive forces across the fracture site, promoting bone healing by encouraging contact between the fracture fragments.
-
Reconstruction Plates:
- Used for complex fractures or reconstructions, these plates can be contoured to fit the specific anatomy of the fractured bone.
Transosseous Wiring (Intraosseous Wiring)
Transosseous wiring is a traditional and effective method for the fixation of jaw bone fractures. It involves the following steps:
-
Technique:
- Holes are drilled in the bony fragments on either side of the fracture line.
- A length of 26-gauge stainless steel wire is passed through the holes and across the fracture.
-
Reduction:
- The fracture must be reduced independently, ensuring that the teeth are in occlusion before securing the wire.
-
Twisting the Wire:
- After achieving proper alignment, the free ends of the wire are twisted to secure the fracture.
- The twisted ends are cut short and tucked into the nearest drill hole to prevent irritation to surrounding tissues.
-
Variations:
- The single strand wire fixation in a horizontal manner is the simplest form of intraosseous wiring, but it can be modified in various ways depending on the specific needs of the fracture and the patient.
Other fixation techniques
Open reduction and internal fixation (ORIF):
Surgical exposure of the fracture site, followed by reduction and fixation with
plates, screws, or nails
Closed reduction and immobilization (CRII):
Manipulation of the bone fragments into alignment without surgical exposure,
followed by cast or splint immobilization
Intramedullary nailing:
Insertion of a metal rod (nail) into the medullary canal of the bone to
stabilize long bone fractures
External fixation:
A device with pins inserted through the bone fragments and connected to an
external frame to provide stability
Tension band wiring:
A technique using wires to apply tension across a fracture site, particularly
useful for avulsion fractures
--------------------------------
Hockey Stick or London Hospital Elevator
The Hockey Stick Elevator, also known as the London Hospital Elevator, is a dental instrument used primarily in oral surgery and tooth extraction procedures. It is designed to facilitate the removal of tooth roots and other dental structures.
Design and Features
-
Blade Shape: The Hockey Stick Elevator features a straight blade that is angled relative to the shank, similar to the Cryer’s elevator. However, unlike the Cryer’s elevator, which has a triangular blade, the Hockey Stick Elevator has a straight blade with a convex surface on one side and a flat surface on the other.
-
Working Surface:
- The flat surface of the blade is the working surface and is equipped with transverse serrations. These serrations enhance the instrument's grip and contact with the root stump, allowing for more effective leverage during extraction.
-
Appearance: The instrument resembles a hockey stick, which is how it derives its name. The distinctive shape aids in its identification and use in clinical settings.
Principles of Operation
- Lever and Wedge Principle:
- The Hockey Stick Elevator operates on the same principles as the Cryer’s elevator, utilizing the lever and wedge principle. This means that the instrument can be used to apply force to the tooth or root, effectively loosening it from the surrounding bone and periodontal ligament.
- Functionality:
- The primary function of the Hockey Stick Elevator is to elevate and luxate teeth or root fragments during extraction procedures. It can be particularly useful in cases where the tooth is impacted or has a curved root.
Cleft Palate and Craniofacial Anomalies
Cleft palate and other craniofacial anomalies are congenital conditions that affect the structure and function of the face and mouth. These conditions can have significant implications for a person's health, development, and quality of life. Below is a detailed overview of cleft palate, its causes, associated craniofacial anomalies, and management strategies.
Cleft Palate
A cleft palate is a congenital defect characterized by an opening or gap in the roof of the mouth (palate) that occurs when the tissue does not fully come together during fetal development. It can occur as an isolated condition or in conjunction with a cleft lip.
Types:
- Complete Cleft Palate: Involves a complete separation of the palate, extending from the front of the mouth to the back.
- Incomplete Cleft Palate: Involves a partial separation of the palate, which may affect only a portion of the roof of the mouth.
Causes:
- Genetic Factors: Family history of cleft palate or other congenital anomalies can increase the risk.
- Environmental Factors: Maternal factors such as smoking, alcohol consumption, certain medications, and nutritional deficiencies (e.g., folic acid) during pregnancy may contribute to the development of clefts.
- Multifactorial Inheritance: Cleft palate often results from a combination of genetic and environmental influences.
Associated Features:
- Cleft Lip: Often occurs alongside cleft palate, resulting in a split or opening in the upper lip.
- Dental Anomalies: Individuals with cleft palate may experience dental issues, including missing teeth, misalignment, and malocclusion.
- Speech and Language Delays: Difficulty with speech development is common due to the altered anatomy of the oral cavity.
- Hearing Problems: Eustachian tube dysfunction can lead to middle ear infections and hearing loss.
Craniofacial Anomalies
Craniofacial anomalies encompass a wide range of congenital conditions that affect the skull and facial structures. Some common craniofacial anomalies include:
-
Cleft Lip and Palate: As previously described, this is one of the most common craniofacial anomalies.
-
Craniosynostosis: A condition where one or more of the sutures in a baby's skull close prematurely, affecting skull shape and potentially leading to increased intracranial pressure.
-
Apert Syndrome: A genetic disorder characterized by the fusion of certain skull bones, leading to a shaped head and facial abnormalities.
-
Treacher Collins Syndrome: A genetic condition that affects the development of facial bones and tissues, leading to underdeveloped facial features.
-
Hemifacial Microsomia: A condition where one side of the face is underdeveloped, affecting the jaw, ear, and other facial structures.
-
Goldenhar Syndrome: A condition characterized by facial asymmetry, ear abnormalities, and spinal defects.
Management and Treatment
Management of cleft palate and craniofacial anomalies typically involves a multidisciplinary approach, including:
-
Surgical Intervention:
- Cleft Palate Repair: Surgical closure of the cleft is usually performed between 6 to 18 months of age to improve feeding, speech, and appearance.
- Cleft Lip Repair: Often performed in conjunction with or prior to palate repair, typically around 3 to 6 months of age.
- Orthognathic Surgery: May be necessary in adolescence or adulthood to correct jaw alignment and improve function.
-
Speech Therapy: Early intervention with speech therapy can help address speech and language delays associated with cleft palate.
-
Dental Care: Regular dental check-ups and orthodontic treatment may be necessary to manage dental anomalies and ensure proper alignment.
-
Hearing Assessment: Regular hearing evaluations are important, as individuals with cleft palate are at higher risk for ear infections and hearing loss.
-
Psychosocial Support: Counseling and support groups can help individuals and families cope with the emotional and social challenges associated with craniofacial anomalies.
Fixation of Condylar Fractures
Condylar fractures of the mandible can be challenging to manage due to their location and the functional demands placed on the condylar region. Various fixation techniques have been developed to achieve stable fixation and promote healing. Below is an overview of the different methods of fixation for condylar fractures, including their advantages, disadvantages, and indications.
1. Miniplate Osteosynthesis
-
Overview:
- Miniplate osteosynthesis involves the use of condylar plates and screw systems designed to withstand biochemical forces, minimizing micromotion at the fracture site.
-
Primary Bone Healing:
- Under optimal conditions of stability and fracture reduction, primary bone healing can occur, allowing new bone to form along the fracture surface without the formation of fibrous tissue.
-
Plate Placement:
- High condylar fractures may accommodate only one plate with two screws above and below the fracture line, parallel to the posterior border, providing adequate stability in most cases.
- For low condylar fractures, two plates may be required. The posterior plate should parallel the posterior ascending ramus, while the anterior plate can be angulated across the fracture line.
-
Mechanical Advantage:
- The use of two miniplates at the anterior and posterior borders of the condylar neck restores tension and compression trajectories, neutralizing functional stresses in the condylar neck.
-
Research Findings:
- Studies have shown that the double mini plate method is the only system able to withstand normal loading forces in cadaver mandibles.
2. Dynamic Compression Plating
-
Overview:
- Dynamic compression plating is generally not recommended for condylar fractures due to the oblique nature of the fractures, which can lead to overlap of fragment ends and loss of ramus height.
-
Current Practice:
- The consensus is that treatment is adequate with miniplates placed in a neutral mode, avoiding the complications associated with dynamic compression plating.
3. Lag Screw Osteosynthesis
-
Overview:
- First described for condylar fractures by Wackerbauer in 1962, lag screws provide a biomechanically advantageous method of fixation.
-
Mechanism:
- A true lag screw has threads only on the distal end, allowing for compression when tightened against the near cortex. This central placement of the screw enhances stability.
-
Advantages:
- Rapid application of rigid fixation and close approximation of fractured parts due to significant compression generated.
- Less traumatic than miniplates, as there is no need to open the joint capsule.
-
Disadvantages:
- Risk of lateralization and rotation of the condylar head if the screw is not placed centrally.
- Requires a steep learning curve for proper application.
-
Contraindications:
- Not suitable for cases with loss of bone in the fracture gap or comminution that could lead to displacement when compression is applied.
-
Popular Options:
- The Eckelt screw is one of the most widely used lag screws in current practice.
4. Pin Fixation
-
Overview:
- Pin fixation involves the use of 1.3 mm Kirschner wires (K-wires) placed into the condyle under direct vision.
-
Technique:
- This method requires an open approach to the condylar head and traction applied to the lower border of the mandible. A minimum of three convergent K-wires is typically needed to ensure stability.
5. Resorbable Pins and Plates
-
Overview:
- Resorbable fixation devices may take more than two years to fully resorb. Materials used include self-reinforced poly-L-lactide screws (SR-PLLA), polyglycolide pins, and absorbable alpha-hydroxy polyesters.
-
Indications:
- These materials are particularly useful in pediatric patients or in situations where permanent hardware may not be desirable.
Neurogenic Shock
Neurogenic shock is a type of distributive shock that occurs due to the loss of vasomotor tone, leading to widespread vasodilation and a significant decrease in systemic vascular resistance. This condition can occur without any loss of blood volume, resulting in inadequate filling of the circulatory system despite normal blood volume. Below is a detailed overview of neurogenic shock, its causes, symptoms, and management.
Mechanism of Neurogenic Shock
- Loss of Vasomotor Tone: Neurogenic shock is primarily caused by the disruption of sympathetic nervous system activity, which leads to a loss of vasomotor tone. This results in massive dilation of blood vessels, particularly veins, causing a significant increase in vascular capacity.
- Decreased Systemic Vascular Resistance: The dilated blood vessels cannot effectively maintain blood pressure, leading to inadequate perfusion of vital organs, including the brain.
Causes
- Spinal Cord Injury: Damage to the spinal cord, particularly at the cervical or upper thoracic levels, can disrupt sympathetic outflow and lead to neurogenic shock.
- Severe Head Injury: Traumatic brain injury can also affect autonomic regulation and result in neurogenic shock.
- Vasovagal Syncope: A common form of neurogenic shock, often triggered by emotional stress, pain, or prolonged standing, leading to a sudden drop in heart rate and blood pressure.
Symptoms
Early Signs:
- Pale or Ashen Gray Skin: Due to peripheral vasodilation and reduced blood flow to the skin.
- Heavy Perspiration: Increased sweating as a response to stress or pain.
- Nausea: Gastrointestinal distress may occur.
- Tachycardia: Increased heart rate as the body attempts to compensate for low blood pressure.
- Feeling of Warmth: Particularly in the neck or face due to vasodilation.
Late Symptoms:
- Coldness in Hands and Feet: Peripheral vasoconstriction may occur as the body prioritizes blood flow to vital organs.
- Hypotension: Significantly low blood pressure due to vasodilation.
- Bradycardia: Decreased heart rate, particularly in cases of vasovagal syncope.
- Dizziness and Visual Disturbance: Due to decreased cerebral perfusion.
- Papillary Dilation: As a response to low light levels in the eyes.
- Hyperpnea: Increased respiratory rate as the body attempts to compensate for low oxygen delivery.
- Loss of Consciousness: Resulting from critically low cerebral blood flow.
Duration of Syncope
- Brief Duration: The duration of syncope in neurogenic shock is typically very brief. Patients often regain consciousness almost immediately upon being placed in a supine position.
- Supine Positioning: This position is crucial as it helps increase venous return to the heart and improves cerebral perfusion, aiding in recovery.
Management
-
Positioning: The first and most important step in managing neurogenic shock is to place the patient in a supine position. This helps facilitate blood flow to the brain.
-
Fluid Resuscitation: While neurogenic shock does not typically involve blood loss, intravenous fluids may be administered to help restore vascular volume and improve blood pressure.
-
Vasopressors: In cases where hypotension persists despite fluid resuscitation, vasopressor medications may be used to constrict blood vessels and increase blood pressure.
-
Monitoring: Continuous monitoring of vital signs, including blood pressure, heart rate, and oxygen saturation, is essential to assess the patient's response to treatment.
-
Addressing Underlying Causes: If neurogenic shock is due to a specific cause, such as spinal cord injury or vasovagal syncope, appropriate interventions should be initiated to address the underlying issue.
Induction of Local Anesthesia
The induction of local anesthesia involves the administration of a local anesthetic agent into the soft tissues surrounding a nerve, allowing for the temporary loss of sensation in a specific area. Understanding the mechanisms of diffusion, the organization of peripheral nerves, and the barriers to anesthetic penetration is crucial for effective anesthesia management in clinical practice.
Mechanism of Action
-
Diffusion:
- After the local anesthetic is injected, it begins to diffuse from the site of deposition into the surrounding tissues. This process is driven by the concentration gradient, where the anesthetic moves from an area of higher concentration (the injection site) to areas of lower concentration (toward the nerve).
- Unhindered Migration: The local anesthetic molecules migrate through the extracellular fluid, seeking to reach the nerve fibers. This movement is termed diffusion, which is the passive movement of molecules through a fluid medium.
-
Anatomic Barriers:
- The penetration of local anesthetics can be hindered by anatomical barriers, particularly the perineurium, which is the most significant barrier to the diffusion of local anesthetics. The perineurium surrounds each fascicle of nerve fibers and restricts the free movement of molecules.
- Perilemma: The innermost layer of the perineurium, known as the perilemma, also contributes to the barrier effect, making it challenging for local anesthetics to penetrate effectively.
Organization of a Peripheral Nerve
Understanding the structure of peripheral nerves is essential for comprehending how local anesthetics work. Here’s a breakdown of the components:
Organization of a Peripheral Nerve |
|
Structure |
Description |
Nerve fiber |
Single nerve cell |
Endoneurium |
Covers each nerve fiber |
Fasciculi |
Bundles of 500 to 1000 nerve fibres |
Perineurium |
Covers fascicule |
Perilemma |
Innermost layer of perinuerium |
Epineurium |
Alveolar connective tissue supporting fasciculi andCarrying nutrient
vessels |
Epineural sheath |
Outer layer of epinuerium |
Composition of Nerve Fibers and Bundles
In a large peripheral nerve, which contains numerous axons, the local anesthetic must diffuse inward toward the nerve core from the extraneural site of injection. Here’s how this process works:
-
Diffusion Toward the Nerve Core:
- The local anesthetic solution must travel through the endoneurium and perineurium to reach the nerve fibers. As it penetrates, the anesthetic is subject to dilution due to tissue uptake and mixing with interstitial fluid.
- This dilution can lead to a concentration gradient where the outer mantle fibers (those closest to the injection site) are blocked effectively, while the inner core fibers (those deeper within the nerve) may not be blocked immediately.
-
Concentration Gradient:
- The outer fibers are exposed to a higher concentration of the local anesthetic, leading to a more rapid onset of anesthesia in these areas. In contrast, the inner core fibers receive a lower concentration and are blocked later.
- The delay in blocking the core fibers is influenced by factors such as the mass of tissue that the anesthetic must penetrate and the diffusivity of the local anesthetic agent.
Clinical Implications
Understanding the induction of local anesthesia and the barriers to diffusion is crucial for clinicians to optimize anesthesia techniques. Here are some key points:
- Injection Technique: Proper technique and site selection for local anesthetic injection can enhance the effectiveness of the anesthetic by maximizing diffusion toward the nerve.
- Choice of Anesthetic: The selection of local anesthetic agents with favorable diffusion properties can improve the onset and duration of anesthesia.
- Monitoring: Clinicians should monitor the effectiveness of anesthesia, especially in procedures involving larger nerves or areas with significant anatomical barriers.
Marginal Resection
Marginal resection, also known as en bloc resection or peripheral osteotomy, is a surgical procedure used to treat locally aggressive benign lesions of the jaw. This technique involves the removal of the lesion along with a margin of surrounding bone, while preserving the continuity of the jaw.
Key Features of Marginal Resection
-
Indications:
- Marginal resection is indicated for benign lesions with a known
propensity for recurrence, such as:
- Ameloblastoma
- Calcifying epithelial odontogenic tumor
- Myxoma
- Ameloblastic odontoma
- Squamous odontogenic tumor
- Benign chondroblastoma
- Hemangioma
- It is also indicated for recurrent lesions that have been previously treated with enucleation alone.
- Marginal resection is indicated for benign lesions with a known
propensity for recurrence, such as:
-
Rationale:
- Enucleation of locally aggressive lesions is not a safe procedure, as it can lead to recurrence. Marginal resection is a more effective approach, as it allows for the complete removal of the tumor along with a margin of surrounding bone.
-
Benefits:
- Complete Removal of the Tumor: Marginal resection ensures the complete removal of the tumor, reducing the risk of recurrence.
- Preservation of Jaw Continuity: This procedure allows for the preservation of jaw continuity, avoiding deformity, disfigurement, and the need for secondary cosmetic surgery and prosthetic rehabilitation.
-
Surgical Technique:
- The procedure involves the removal of the lesion along with a margin of surrounding bone. The extent of the resection is determined by the size and location of the lesion, as well as the patient's overall health and medical history.
-
Postoperative Care:
- Patients may experience some discomfort and swelling following the procedure, which can be managed with analgesics and anti-inflammatory medications.
- Regular follow-up appointments are necessary to monitor the healing process and assess for any potential complications.
-
Outcomes:
- Marginal resection is a highly effective procedure for treating locally aggressive benign lesions of the jaw. It allows for the complete removal of the tumor, while preserving jaw continuity and minimizing the risk of recurrence.