NEET MDS Lessons
Conservative Dentistry
Film Thickness of Dental Cements
The film thickness of dental cements is an important property that can influence the effectiveness of the material in various dental applications, including luting agents, bases, and liners. .
1. Importance of Film Thickness
A. Clinical Implications
- Sealing Ability: The film thickness of a cement can affect its ability to create a proper seal between the restoration and the tooth structure. Thicker films may lead to gaps and reduced retention.
- Adaptation: A thinner film allows for better adaptation to the irregularities of the tooth surface, which is crucial for minimizing microleakage and ensuring the longevity of the restoration.
B. Material Selection
- Choosing the Right Cement: Understanding the film thickness of different cements helps clinicians select the appropriate material for specific applications, such as luting crowns, bridges, or other restorations.
2. Summary of Film Thickness
- Zinc Phosphate: 20 mm – Known for its strength and durability, often used for cementing crowns and bridges.
- Zinc Oxide Eugenol (ZOE), Type I: 25 mm – Commonly used for temporary restorations and as a base under other materials.
- ZOE + Alumina + EBA (Type II): 25 mm – Offers improved properties for specific applications.
- ZOE + Polymer (Type II): 32 mm – Provides enhanced strength and flexibility.
- Silicophosphate: 25 mm – Used for its aesthetic properties and good adhesion.
- Resin Cement: < 25 mm – Offers excellent bonding and low film thickness, making it ideal for aesthetic restorations.
- Polycarboxylate: 21 mm – Known for its biocompatibility and moderate strength.
- ** Glass Ionomer: 24 mm – Valued for its fluoride release and ability to bond chemically to tooth structure, making it suitable for various restorative applications.
Sterilization in Dental Practice
Sterilization is a critical process in dental practice, ensuring that all forms of life, including the most resistant bacterial spores, are eliminated from instruments that come into contact with mucosa or penetrate oral tissues. This guide outlines the accepted methods of sterilization, their requirements, and the importance of biological monitoring to ensure effectiveness.
Sterilization: The process of killing all forms of life, including bacterial spores, to ensure that instruments are free from any viable microorganisms. This is essential for preventing infections and maintaining patient safety.
Accepted Methods of Sterilization
There are four primary methods of sterilization commonly used in dental practices:
A. Steam Pressure Sterilization (Autoclave)
- Description: Utilizes steam under pressure to achieve high temperatures that kill microorganisms.
- Requirements:
- Temperature: Typically operates at 121-134°C (250-273°F).
- Time: Sterilization cycles usually last from 15 to 30 minutes, depending on the load.
- Packaging: Instruments must be properly packaged to allow steam penetration.
B. Chemical Vapor Pressure Sterilization (Chemiclave)
- Description: Involves the use of chemical vapors (such as formaldehyde) under pressure to sterilize instruments.
- Requirements:
- Temperature: Operates at approximately 132°C (270°F).
- Time: Sterilization cycles typically last about 20 minutes.
- Packaging: Instruments should be packaged to allow vapor penetration.
C. Dry Heat Sterilization (Dryclave)
- Description: Uses hot air to sterilize instruments, effectively killing microorganisms through prolonged exposure to high temperatures.
- Requirements:
- Temperature: Commonly operates at 160-180°C (320-356°F).
- Time: Sterilization cycles can last from 1 to 2 hours, depending on the temperature.
- Packaging: Instruments must be packaged to prevent contamination after sterilization.
D. Ethylene Oxide (EtO) Sterilization
- Description: Utilizes ethylene oxide gas to sterilize heat-sensitive instruments and materials.
- Requirements:
- Temperature: Typically operates at low temperatures (around 37-63°C or 98.6-145°F).
- Time: Sterilization cycles can take several hours, including aeration time.
- Packaging: Instruments must be packaged in materials that allow gas penetration.
Considerations for Choosing Sterilization Equipment
When selecting sterilization equipment, dental practices must consider several factors:
- Patient Load: The number of patients treated daily will influence the size and capacity of the sterilizer.
- Turnaround Time: The time required for instrument reuse should align with the sterilization cycle time.
- Instrument Inventory: The variety and quantity of instruments will determine the type and size of sterilizer needed.
- Instrument Quality: The materials and construction of instruments may affect their compatibility with certain sterilization methods.
Biological Monitoring
A. Importance of Biological Monitoring
- Biological Monitoring Strips: These strips contain spores calibrated to be killed when sterilization conditions are met. They serve as a reliable weekly monitor of sterilization effectiveness.
B. Process
- Testing: After sterilization, the strips are sent to a licensed reference laboratory for testing.
- Documentation: Dentists receive independent documentation of monitoring frequency and sterilization effectiveness.
- Failure Response: In the event of a sterilization failure, laboratory personnel provide immediate expert consultation to help resolve the issue.
Mercury Release in Dental Procedures Involving Amalgam
Mercury is a key component of dental amalgam, and its release during various dental procedures has been a topic of concern due to potential health risks. Understanding the amounts of mercury released during different stages of amalgam handling is essential for dental professionals to implement safety measures and minimize exposure.
1. Mercury Release Quantification
A. Trituration
- Amount Released: 1-2 µg
- Description: Trituration is the process of mixing mercury with alloy particles to form a homogenous amalgam. During this process, small amounts of mercury can be released into the air, which can contribute to overall exposure.
B. Placement of Amalgam Restoration
- Amount Released: 6-8 µg
- Description: When placing an amalgam restoration, additional mercury may be released due to the manipulation of the material. This includes the handling and packing of the amalgam into the cavity preparation.
C. Dry Polishing
- Amount Released: 44 µg
- Description: Dry polishing of amalgam restorations generates the highest amount of mercury release among the listed procedures. The friction and heat generated during dry polishing can vaporize mercury, leading to increased exposure.
D. Wet Polishing
- Amount Released: 2-4 µg
- Description: Wet polishing, which involves the use of water to cool the restoration during polishing, results in significantly lower mercury release compared to dry polishing. The water helps to capture and reduce the amount of mercury vapor released into the air.
Glass ionomer cement is a tooth coloured material
Material was based on reaction between silicate glass powder & polyacrylicacid.
They bond chemically to tooth structure & release fluoride for relatively long period
CLASSIFICATION
Type I. For luting
Type II. For restoration
Type II.1 Restorative esthetic
Type II.2 Restorative reinforced
Type III. For liner & bases
Type IV. Fissure & sealent
Type V. As Orthodontic cement
Type VI. For core build up
Physical Properties
1. Low solubility
2. Coefficient of thermal expansion similar to dentin
3. Fluoride release and fluoride recharge
4. High compressive strengths
5. Bonds to tooth structure
6. Low flexural strength
7. Low shear strength
8. Dimensional change (slight expansion) (shrinks on setting, expands with water sorption)
9. Brittle
10.Lacks translucency
11.Rough surface texture
Indications for use of Type II glass ionomer cements
1) non-stress bearing areas
2) class III and V restorations in adults
3) class I and II restorations in primary dentition
4) temporary or “caries control” restorations
5) crown margin repairs
6) cement base under amalgam, resin, ceramics, direct and indirect gold
7) core buildups when at least 3 walls of tooth are remaining (after crown preparation)
Contraindications
1) high stress applications I. class IV and class II restorations II. cusp replacement III. core build-ups with less than 3 sound walls remaining
Composition
Factors affecting the rate or setting
1. Glass composition:Higher Alumina – Silica ratio, faster set and shorter working time.
2. Particle Size: finer the powder, faster the set.
3. Addition of Tartaric Acid:-Sharpens set without shortening the working time.
4. Relative proportions of the constituents: Greater the proportion of glass and lower the proportion of water, the faster the set.
5. Temperature
Setting Time
Type 1 - 4-5 min
type II - 7 min
PROPERTIES
Adhesion :
- Glass ionomer cement bonds chemically to the tooth structure->reaction occur between carboxyl group of poly acid & calcium of hydroxyl apatite.
- Bonding with enamel is higher than that of dentin ,due to greater inorganic content.
Esthetics :
-GIC is tooth coloured material & available in different shades.
Inferior to composites.
They lack translucency & rough surface texture.
Potential for discolouration & staining.
Biocompatibilty :
- Pulpal response to glass ionomer cement is favorable.
- Pulpal response is mild due to
- High buffering capacity of hydroxy apatite.
- Large molecular weight of the polyacrylic acid ,which prevents entry into dentinal tubules.
a) Pulp reaction – ZOE < Glass Ionomer < Zinc Phosphate
b) Powder:liquid ratio influences acidity
c) Solubility & Disintegration:-Initial solubility is high due to leaching of intermediate products.The complete setting reaction takes place in 24 hrs, cement should be protected from saliva during this period.
Anticariogenic properties :
- Fluoride is released from glass ionomer at the time of mixing & lies with in matrix.
Fluoride can be released out without affecting the physical properties of cement.
ADVANTAGE DISADVANTAGE
- Use of amalgam separators: Dental offices should install and maintain amalgam separators to capture at least 95% of amalgam particles before they enter the wastewater system. This reduces the release of mercury into the environment.
- Vacuum line maintenance: Regularly replace the vacuum line trap to avoid mercury accumulation and ensure efficient evacuation of mercury vapor during amalgam removal.
- Adequate ventilation: Maintain proper air exchange in the operatory and use a high-volume evacuation (HVE) system to reduce mercury vapor levels during amalgam placement and removal.
- Personal protective equipment (PPE): Dentists, hygienists, and assistants should wear PPE, such as masks, gloves, and protective eyewear to minimize skin and respiratory exposure to mercury vapor and particles.
- Mercury spill management: Have a written spill protocol and necessary clean-up materials readily available. Use a HEPA vacuum to clean up spills and dispose of contaminated materials properly.
- Safe storage: Store elemental mercury in tightly sealed, non-breakable containers in a dedicated area with controlled access.
- Proper disposal: Follow local, state, and federal regulations for the disposal of dental amalgam waste, including used capsules, amalgam separators, and chairside traps.
- Continuous monitoring: Implement regular monitoring of mercury vapor levels in the operatory and staff exposure levels to ensure compliance with occupational safety guidelines.
- Staff training: Provide regular training on the handling of dental amalgam and mercury hygiene to all dental personnel.
- Patient communication: Inform patients about the use of dental amalgam and the safety measures in place to minimize their exposure to mercury.
- Alternative restorative materials: Consider using alternative restorative materials, such as composite resins or glass ionomers, where appropriate.
Cariogram: Understanding Caries Risk
The Cariogram is a graphical representation developed by Brathall et al. in 1999 to illustrate the interaction of various factors contributing to the development of dental caries. This tool helps dental professionals and patients understand the multifactorial nature of caries and assess individual risk levels.
- Purpose: The Cariogram visually represents the interplay between different factors that influence caries development, allowing for a comprehensive assessment of an individual's caries risk.
- Structure: The Cariogram is depicted as a pie chart divided into five distinct sectors, each representing a specific contributing factor.
Sectors of the Cariogram
A. Green Sector: Chance to Avoid Caries
- Description: This sector estimates the likelihood of avoiding caries based on the individual's overall risk profile.
- Significance: A larger green area indicates a higher chance of avoiding caries, reflecting effective preventive measures and good oral hygiene practices.
B. Dark Blue Sector: Diet
- Description: This sector assesses dietary factors, including the content and frequency of sugar consumption.
- Components: It considers both the types of foods consumed (e.g., sugary snacks, acidic beverages) and how often they are eaten.
- Significance: A smaller dark blue area suggests a diet that is less conducive to caries development, while a larger area indicates a higher risk due to frequent sugar intake.
C. Red Sector: Bacteria
- Description: This sector evaluates the bacterial load in the mouth, particularly focusing on the amount of plaque and the presence of Streptococcus mutans.
- Components: It takes into account the quantity of plaque accumulation and the specific types of bacteria present.
- Significance: A larger red area indicates a higher bacterial presence, which correlates with an increased risk of caries.
D. Light Blue Sector: Susceptibility
- Description: This sector reflects the individual's susceptibility to caries, influenced by factors such as fluoride exposure, saliva secretion, and saliva buffering capacity.
- Components: It considers the effectiveness of fluoride programs, the volume of saliva produced, and the saliva's ability to neutralize acids.
- Significance: A larger light blue area suggests greater susceptibility to caries, while a smaller area indicates protective factors are in place.
E. Yellow Sector: Circumstances
- Description: This sector encompasses the individual's past caries experience and any related health conditions that may affect caries risk.
- Components: It includes the history of previous caries, dental treatments, and systemic diseases that may influence oral health.
- Significance: A larger yellow area indicates a higher risk based on past experiences and health conditions, while a smaller area suggests a more favorable history.
Clinical use of the Cariogram
A. Personalized Risk Assessment
- The Cariogram provides a visual and intuitive way to assess an individual's caries risk, allowing for tailored preventive strategies based on specific factors.
B. Patient Education
- By using the Cariogram, dental professionals can effectively communicate the multifactorial nature of caries to patients, helping them understand how their diet, oral hygiene, and other factors contribute to their risk.
C. Targeted Interventions
- The information derived from the Cariogram can guide dental professionals in developing targeted interventions, such as dietary counseling, fluoride treatments, and improved oral hygiene practices.
D. Monitoring Progress
- The Cariogram can be used over time to monitor changes in an individual's caries risk profile, allowing for adjustments in preventive strategies as needed.
Amalgam Bonding Agents
Amalgam bonding agents can be classified into several categories based on their composition and mechanism of action:
A. Adhesive Systems
- Total-Etch Systems: These systems involve etching both enamel and dentin with phosphoric acid to create a rough surface that enhances mechanical retention. After etching, a bonding agent is applied to the prepared surface before the amalgam is placed.
- Self-Etch Systems: These systems combine etching and bonding in one step, using acidic monomers that partially demineralize the tooth surface while simultaneously promoting bonding. They are less technique-sensitive than total-etch systems.
B. Glass Ionomer Cements
- Glass ionomer cements can be used as a base or liner under amalgam restorations. They bond chemically to both enamel and dentin, providing a good seal and some degree of fluoride release, which can help in caries prevention.
C. Resin-Modified Glass Ionomers
- These materials combine the properties of glass ionomer cements with added resins to improve their mechanical properties and bonding capabilities. They can be used as a liner or base under amalgam restorations.
Mechanism of Action
A. Mechanical Retention
- Amalgam bonding agents create a roughened surface on the tooth structure, which increases the surface area for mechanical interlocking between the amalgam and the tooth.
B. Chemical Bonding
- Some bonding agents form chemical bonds with the tooth structure, particularly with dentin. This chemical interaction can enhance the overall retention of the amalgam restoration.
C. Sealing the Interface
- By sealing the interface between the amalgam and the tooth, bonding agents help prevent microleakage, which can lead to secondary caries and postoperative sensitivity.
Applications of Amalgam Bonding Agents
A. Sealing Tooth Preparations
- Bonding agents are used to seal the cavity preparation before the placement of amalgam, reducing the risk of microleakage and enhancing the longevity of the restoration.
B. Bonding New to Old Amalgam
- When repairing or replacing an existing amalgam restoration, bonding agents can be used to bond new amalgam to the old amalgam, improving the overall integrity of the restoration.
C. Repairing Marginal Defects
- Bonding agents can be applied to repair marginal defects in amalgam restorations, helping to restore the seal and prevent further deterioration.
Clinical Considerations
A. Technique Sensitivity
- The effectiveness of amalgam bonding agents can be influenced by the technique used during application. Proper surface preparation, including cleaning and drying the tooth structure, is essential for optimal bonding.
B. Moisture Control
- Maintaining a dry field during the application of bonding agents is critical. Moisture contamination can compromise the bond strength and lead to restoration failure.
C. Material Compatibility
- It is important to ensure compatibility between the bonding agent and the amalgam used. Some bonding agents may not be suitable for all types of amalgam, so clinicians should follow manufacturer recommendations.
D. Longevity and Performance
- While amalgam bonding agents can enhance the performance of amalgam restorations, their long-term effectiveness can vary. Regular monitoring of restorations is essential to identify any signs of failure or degradation.