NEET MDS Lessons
Conservative Dentistry
Rotational Speeds of Dental Instruments
1. Measurement of Rotational Speed
Revolutions Per Minute (RPM)
- Definition: The rotational speed of dental instruments is measured in revolutions per minute (rpm), indicating how many complete rotations the instrument makes in one minute.
- Importance: Understanding the rpm is essential for selecting the appropriate instrument for specific dental procedures, as different speeds are suited for different tasks.
2. Speed Ranges of Dental Instruments
A. Low-Speed Instruments
- Speed Range: Below 12,000 rpm.
- Applications:
- Finishing and Polishing: Low-speed handpieces are commonly used for finishing and polishing restorations, as they provide greater control and reduce the risk of overheating the tooth structure.
- Cavity Preparation: They can also be used for initial cavity preparation, especially in areas where precision is required.
- Instruments: Low-speed handpieces, contra-angle attachments, and slow-speed burs.
B. Medium-Speed Instruments
- Speed Range: 12,000 to 200,000 rpm.
- Applications:
- Cavity Preparation: Medium-speed handpieces are often used for more aggressive cavity preparation and tooth reduction, providing a balance between speed and control.
- Crown Preparation: They are suitable for preparing teeth for crowns and other restorations.
- Instruments: Medium-speed handpieces and specific burs designed for this speed range.
C. High-Speed Instruments
- Speed Range: Above 200,000 rpm.
- Applications:
- Rapid Cutting: High-speed handpieces are primarily used for cutting hard dental tissues, such as enamel and dentin, due to their ability to remove material quickly and efficiently.
- Cavity Preparation: They are commonly used for cavity preparations, crown preparations, and other procedures requiring rapid tooth reduction.
- Instruments: High-speed handpieces and diamond burs, which are designed to withstand the high speeds and provide effective cutting.
3. Clinical Implications
A. Efficiency and Effectiveness
- Material Removal: Higher speeds allow for faster material removal, which can reduce chair time for patients and improve workflow in the dental office.
- Precision: Lower speeds provide greater control, which is essential for delicate procedures and finishing work.
B. Heat Generation
- Risk of Overheating: High-speed instruments can generate significant heat, which may lead to pulpal damage if not managed properly. Adequate cooling with water spray is essential during high-speed procedures to prevent overheating of the tooth.
C. Instrument Selection
- Choosing the Right Speed: Dentists must select the appropriate speed based on the procedure being performed, the type of material being cut, and the desired outcome. Understanding the characteristics of each speed range helps in making informed decisions.
Composite Materials- Mechanical Properties and Clinical Considerations
Introduction
Composite materials are essential in modern dentistry, particularly for restorative procedures. Their mechanical properties, aesthetic qualities, and bonding capabilities make them a preferred choice for various applications. This lecture will focus on the importance of the bond between the organic resin matrix and inorganic filler, the evolution of composite materials, and key clinical considerations in their application.
1. Bonding in Composite Materials
Importance of Bonding
For a composite to exhibit good mechanical properties, a strong bond must exist between the organic resin matrix and the inorganic filler. This bond is crucial for:
- Strength: Enhancing the overall strength of the composite.
- Durability: Reducing solubility and water absorption, which can compromise the material over time.
Role of Silane Coupling Agents
- Silane Coupling Agents: These agents are used to coat filler particles, facilitating a chemical bond between the filler and the resin matrix. This interaction significantly improves the mechanical properties of the composite.
2. Evolution of Composite Materials
Microfill Composites
- Introduction: In the late 1970s, microfill composites, also known as "polishable" composites, were introduced.
- Characteristics: These materials replaced the rough surface of conventional composites with a smooth, lustrous surface similar to tooth enamel.
- Composition: Microfill composites contain colloidal silica particles instead of larger filler particles, allowing for better polishability and aesthetic outcomes.
Hybrid Composites
- Structure: Hybrid composites contain a combination of larger filler particles and sub-micronsized microfiller particles.
- Surface Texture: This combination provides a smooth "patina-like" surface texture in the finished restoration, enhancing both aesthetics and mechanical properties.
3. Clinical Considerations
Polymerization Shrinkage and Configuration Factor (C-factor)
- C-factor: The configuration factor is the ratio of bonded surfaces to unbonded surfaces in a tooth preparation. A higher C-factor can lead to increased polymerization shrinkage, which may compromise the restoration.
- Clinical Implications: Understanding the C-factor is essential for minimizing shrinkage effects, particularly in Class II restorations.
Incremental Placement of Composite
- Incremental Technique: For Class II restorations, it is crucial to place and cure the composite incrementally. This approach helps reduce the effects of polymerization shrinkage, especially along the gingival floor.
- Initial Increment: The first small increment should be placed along the gingival floor and extend slightly up the facial and lingual walls to ensure proper adaptation and minimize stress.
4. Curing Techniques
Light-Curing Systems
- Common Systems: The most common light-curing systems include quartz/tungsten/halogen lamps. However, alternatives such as plasma arc curing (PAC) and argon laser curing systems are available.
- Advantages of PAC and Laser Systems: These systems provide high-intensity and rapid polymerization compared to traditional halogen systems, which can be beneficial in clinical settings.
Enamel Beveling
- Beveling Technique: The advantage of an enamel bevel in composite tooth preparation is that it exposes the ends of the enamel rods, allowing for more effective etching compared to only exposing the sides.
- Clinical Application: Proper beveling can enhance the bond strength and overall success of the restoration.
5. Managing Microfractures and Marginal Integrity
Causes of Microfractures
Microfractures in marginal enamel can result from:
- Traumatic contouring or finishing techniques.
- Inadequate etching and bonding.
- High-intensity light-curing, leading to excessive polymerization stresses.
Potential Solutions
To address microfractures, clinicians can consider:
- Re-etching, priming, and bonding the affected area.
- Conservatively removing the fault and re-restoring.
- Using atraumatic finishing techniques, such as light intermittent pressure.
- Employing slow-start polymerization techniques to reduce stress.
Glass ionomer cement is a tooth coloured material
Material was based on reaction between silicate glass powder & polyacrylicacid.
They bond chemically to tooth structure & release fluoride for relatively long period
CLASSIFICATION
Type I. For luting
Type II. For restoration
Type II.1 Restorative esthetic
Type II.2 Restorative reinforced
Type III. For liner & bases
Type IV. Fissure & sealent
Type V. As Orthodontic cement
Type VI. For core build up
Physical Properties
1. Low solubility
2. Coefficient of thermal expansion similar to dentin
3. Fluoride release and fluoride recharge
4. High compressive strengths
5. Bonds to tooth structure
6. Low flexural strength
7. Low shear strength
8. Dimensional change (slight expansion) (shrinks on setting, expands with water sorption)
9. Brittle
10.Lacks translucency
11.Rough surface texture
Indications for use of Type II glass ionomer cements
1) non-stress bearing areas
2) class III and V restorations in adults
3) class I and II restorations in primary dentition
4) temporary or “caries control” restorations
5) crown margin repairs
6) cement base under amalgam, resin, ceramics, direct and indirect gold
7) core buildups when at least 3 walls of tooth are remaining (after crown preparation)
Contraindications
1) high stress applications I. class IV and class II restorations II. cusp replacement III. core build-ups with less than 3 sound walls remaining
Composition
Factors affecting the rate or setting
1. Glass composition:Higher Alumina – Silica ratio, faster set and shorter working time.
2. Particle Size: finer the powder, faster the set.
3. Addition of Tartaric Acid:-Sharpens set without shortening the working time.
4. Relative proportions of the constituents: Greater the proportion of glass and lower the proportion of water, the faster the set.
5. Temperature
Setting Time
Type 1 - 4-5 min
type II - 7 min
PROPERTIES
Adhesion :
- Glass ionomer cement bonds chemically to the tooth structure->reaction occur between carboxyl group of poly acid & calcium of hydroxyl apatite.
- Bonding with enamel is higher than that of dentin ,due to greater inorganic content.
Esthetics :
-GIC is tooth coloured material & available in different shades.
Inferior to composites.
They lack translucency & rough surface texture.
Potential for discolouration & staining.
Biocompatibilty :
- Pulpal response to glass ionomer cement is favorable.
- Pulpal response is mild due to
- High buffering capacity of hydroxy apatite.
- Large molecular weight of the polyacrylic acid ,which prevents entry into dentinal tubules.
a) Pulp reaction – ZOE < Glass Ionomer < Zinc Phosphate
b) Powder:liquid ratio influences acidity
c) Solubility & Disintegration:-Initial solubility is high due to leaching of intermediate products.The complete setting reaction takes place in 24 hrs, cement should be protected from saliva during this period.
Anticariogenic properties :
- Fluoride is released from glass ionomer at the time of mixing & lies with in matrix.
Fluoride can be released out without affecting the physical properties of cement.
ADVANTAGE DISADVANTAGE
Hand Instruments - Design and Balancing
Hand instruments are essential tools in dentistry, and their design significantly impacts their effectiveness and usability. Proper balancing and angulation of these instruments are crucial for achieving optimal control and precision during dental procedures. Below is an overview of the key aspects of hand instrument design, focusing on the shank, angulation, and balancing.
1. Importance of Balancing
A. Definition of Balance
- Balanced Instruments: A hand instrument is considered balanced when the concentration of force can be applied to the blade without causing rotation in the grasp of the operator. This balance is essential for effective cutting and manipulation of tissues.
B. Achieving Balance
- Proper Angulation of Shank: The shank must be angled appropriately so that the cutting edge of the blade lies within the projected diameter of the handle. This design minimizes the tendency for the instrument to rotate during use.
- Off-Axis Blade Edge: For optimal anti-rotational design, the blade edge should be positioned off-axis by 1 to 2 mm. This slight offset helps maintain balance while allowing effective force application.
2. Shank Design
A. Definition
- Shank: The shank connects the handle to the blade of the instrument. It plays a critical role in the instrument's overall design and functionality.
B. Characteristics
- Tapering: The shank typically tapers from the handle down to the blade, which can enhance control and maneuverability.
- Surface Texture: The shank is usually smooth, round, or tapered, depending on the specific instrument design.
- Angulation: The shank may be straight or angled, allowing for various access and visibility during procedures.
C. Classification Based on Angles
Instruments can be classified based on the number of angles in the shank:
- Straight: No angle in the shank.
- Monoangle: One angle in the shank.
- Binangle: Two angles in the shank.
- Triple-Angle: Three angles in the shank.
3. Angulation and Control
A. Purpose of Angulation
- Access and Stability: The angulation of the instrument is designed to provide better access to the treatment area while maintaining stability during use.
B. Proximity to Long Axis
- Control: The closer the working point (the blade) is to the long axis of the handle, the better the control over the instrument. Ideally, the working point should be within 3 mm of the center of the long axis of the handle for optimal control.
4. Balancing Examples
A. Balanced Instrument
- Example A: When the working end of the instrument lies within 2-3 mm of the long axis of the handle, it provides effective balancing. This configuration allows the operator to apply force efficiently without losing control.
B. Unbalanced Instrument
- Example B: If the working end is positioned away from the long axis of the handle, it results in an unbalanced instrument. This design can lead to difficulty in controlling the instrument and may compromise the effectiveness of the procedure.
Indirect Porcelain Veneers: Etched Feldspathic Veneers
Indirect porcelain veneers, particularly etched porcelain veneers, are a popular choice in cosmetic dentistry for enhancing the aesthetics of teeth. This lecture will focus on the characteristics, bonding mechanisms, and clinical considerations associated with etched feldspathic veneers.
- Indirect Porcelain Veneers: These are thin shells of porcelain that are custom-made in a dental laboratory and then bonded to the facial surface of the teeth. They are used to improve the appearance of teeth that are discolored, misaligned, or have surface irregularities.
Types of Porcelain Veneers
- Feldspathic Porcelain: The most frequently used type of porcelain for veneers is feldspathic porcelain. This material is known for its excellent aesthetic properties, including translucency and color matching with natural teeth.
Hydrofluoric Acid Etching
- Etching with Hydrofluoric Acid: Feldspathic porcelain veneers are typically etched with hydrofluoric acid before bonding. This process creates a roughened surface on the porcelain, which enhances the bonding area.
- Surface Characteristics: The etching process increases the surface area and creates micro-retentive features that improve the mechanical interlocking between the porcelain and the resin bonding agent.
Resin-Bonding Mediums
- High Bond Strengths: The etched porcelain can achieve high bond strengths to the etched enamel through the use of resin-bonding agents. These agents are designed to penetrate the micro-retentive surface created by the etching process.
- Bonding Process:
- Surface Preparation: The porcelain surface is etched with hydrofluoric acid, followed by thorough rinsing and drying.
- Application of Bonding Agent: A resin bonding agent is applied to the etched porcelain surface. This agent may contain components that enhance adhesion to both the porcelain and the tooth structure.
- Curing: The bonding agent is cured, either chemically or with a light-curing process, to achieve a strong bond between the porcelain veneer and the tooth.
Importance of Enamel Etching
- Etched Enamel: The enamel surface of the tooth is also typically etched with phosphoric acid to enhance the bond between the resin and the tooth structure. This dual etching process (both porcelain and enamel) is crucial for achieving optimal bond strength.
Clinical Considerations
A. Indications for Use
- Aesthetic Enhancements: Indirect porcelain veneers are indicated for patients seeking aesthetic improvements, such as correcting discoloration, closing gaps, or altering the shape of teeth.
- Minimal Tooth Preparation: They require minimal tooth preparation compared to crowns, preserving more of the natural tooth structure.
B. Contraindications
- Severe Tooth Wear: Patients with significant tooth wear or structural damage may require alternative restorative options.
- Bruxism: Patients with bruxism (teeth grinding) may not be ideal candidates for porcelain veneers due to the potential for fracture.
C. Longevity and Maintenance
- Durability: When properly bonded and maintained, porcelain veneers can last many years. Regular dental check-ups are essential to monitor the condition of the veneers and surrounding tooth structure.
- Oral Hygiene: Good oral hygiene practices are crucial to prevent caries and periodontal disease, which can compromise the longevity of the veneers.
Atraumatic Restorative Treatment (ART) is a minimally invasive approach to
dental cavity management and restoration. Developed as a response to the
limitations of traditional drilling and filling methods, ART aims to preserve as
much of the natural tooth structure as possible while effectively managing
caries. The technique was pioneered in the mid-1980s by Dr. Frencken in Tanzania
as a way to address the high prevalence of dental decay in a setting with
limited access to traditional dental equipment and materials. The term "ART" was
coined by Dr. McLean to reflect the gentle and non-traumatic nature of the
treatment.
ART involves the following steps:
1. Cleaning and Preparation: The tooth is cleaned with a hand instrument to
remove plaque and debris.
2. Moisture Control: The tooth is kept moist with a gel or paste to prevent
desiccation and maintain the integrity of the tooth structure.
3. Carious Tissue Removal: Soft, decayed tissue is removed manually with hand
instruments, without the use of rotary instruments or drills.
4. Restoration: The prepared cavity is restored with an adhesive material,
typically glass ionomer cement, which chemically bonds to the tooth structure
and releases fluoride to prevent further decay.
Indications for ART include:
- Small to medium-sized cavities in posterior teeth (molars and premolars).
- Decay in the initial stages that has not yet reached the dental pulp.
- Patients who may not tolerate or have access to traditional restorative
methods, such as those in remote or underprivileged areas.
- Children or individuals with special needs who may benefit from a less
invasive and less time-consuming approach.
- As part of a public health program focused on preventive and minimal
intervention dentistry.
Contraindications for ART include:
- Large cavities that extend into the pulp chamber or involve extensive tooth
decay.
- Presence of active infection, swelling, abscess, or fistula around the tooth.
- Teeth with poor prognosis or severe damage that require more extensive
treatment such as root canal therapy or extraction.
- Inaccessible cavities where hand instruments cannot effectively remove decay
or place the restorative material.
The ART technique is advantageous in several ways:
- It reduces the need for local anesthesia, as it is often painless.
- It preserves more of the natural tooth structure.
- It is less technique-sensitive and does not require advanced equipment.
- It is relatively quick and can be performed in a single visit.
- It is suitable for use in areas with limited resources and less developed
dental infrastructure.
- It reduces the risk of microleakage and secondary caries.
However, ART also has limitations, such as reduced longevity compared to amalgam
or composite fillings, especially in large restorations or high-stress areas,
and the need for careful moisture control during the procedure to ensure proper
bonding of the material. Additionally, ART is not recommended for all cases and
should be considered on an individual basis, taking into account the patient's
oral health status and the specific requirements of each tooth.
Window of Infectivity
The concept of the "window of infectivity" was introduced by Caufield in 1993 to describe critical periods in early childhood when the oral cavity is particularly susceptible to colonization by Streptococcus mutans, a key bacterium associated with dental caries. Understanding these windows is essential for implementing preventive measures against caries in children.
- Window of Infectivity: This term refers to specific time periods during which the acquisition of Streptococcus mutans occurs, leading to an increased risk of dental caries. These windows are characterized by the eruption of teeth, which creates opportunities for bacterial colonization.
First Window of Infectivity
A. Timing
- Age Range: The first window of infectivity is observed between 19 to 23 months of age, coinciding with the eruption of primary teeth.
B. Mechanism
- Eruption of Primary Teeth: As primary teeth erupt, they
provide a "virgin habitat" for S. mutans to colonize the oral
cavity. This is significant because:
- Reduced Competition: The newly erupted teeth have not yet been colonized by other indigenous bacteria, allowing S. mutans to establish itself without competition.
- Increased Risk of Caries: The presence of S. mutans in the oral cavity during this period can lead to an increased risk of developing dental caries, especially if dietary habits include frequent sugar consumption.
Second Window of Infectivity
A. Timing
- Age Range: The second window of infectivity occurs between 6 to 12 years of age, coinciding with the eruption of permanent teeth.
B. Mechanism
- Eruption of Permanent Dentition: As permanent teeth
emerge, they again provide opportunities for S. mutans to colonize
the oral cavity. This window is characterized by:
- Increased Susceptibility: The transition from primary to permanent dentition can lead to changes in oral flora and an increased risk of caries if preventive measures are not taken.
- Behavioral Factors: During this age range, children may have increased exposure to sugary foods and beverages, further enhancing the risk of S. mutans colonization and subsequent caries development.
4. Clinical Implications
A. Preventive Strategies
- Oral Hygiene Education: Parents and caregivers should be educated about the importance of maintaining good oral hygiene practices from an early age, especially during the windows of infectivity.
- Dietary Counseling: Limiting sugary snacks and beverages during these critical periods can help reduce the risk of S. mutans colonization and caries development.
- Regular Dental Visits: Early and regular dental check-ups can help monitor the oral health of children and provide timely interventions if necessary.
B. Targeted Interventions
- Fluoride Treatments: Application of fluoride varnishes or gels during these windows can help strengthen enamel and reduce the risk of caries.
- Sealants: Dental sealants can be applied to newly erupted permanent molars to provide a protective barrier against caries.