Talk to us?

Conservative Dentistry - NEETMDS- courses
NEET MDS Lessons
Conservative Dentistry

Amorphous Calcium Phosphate (ACP)

Amorphous Calcium Phosphate (ACP) is a significant compound in dental materials and oral health, known for its role in the biological formation of hydroxyapatite, the primary mineral component of tooth enamel and bone. ACP has both preventive and restorative applications in dentistry, making it a valuable material for enhancing oral health.

1. Biological Role

A. Precursor to Hydroxyapatite

  • Formation: ACP serves as an antecedent in the biological formation of hydroxyapatite (HAP), which is essential for the mineralization of teeth and bones.
  • Conversion: At neutral to high pH levels, ACP remains in its original amorphous form. However, when exposed to low pH conditions (pH < 5-8), ACP converts into hydroxyapatite, helping to replace the HAP lost due to acidic demineralization.

2. Properties of ACP

A. pH-Dependent Behavior

  • Neutral/High pH: At neutral or high pH levels, ACP remains stable and does not dissolve.
  • Low pH: When the pH drops below 5-8, ACP begins to dissolve, releasing calcium (Ca²⁺) and phosphate (PO₄³⁻) ions. This process is crucial in areas where enamel demineralization has occurred due to acid exposure.

B. Smart Material Characteristics

ACP is often referred to as a "smart material" due to its unique properties:

  • Targeted Release: ACP releases calcium and phosphate ions specifically at low pH levels, which is when the tooth is at risk of demineralization.
  • Acid Neutralization: The released calcium and phosphate ions help neutralize acids in the oral environment, effectively buffering the pH and reducing the risk of further enamel erosion.
  • Reinforcement of Natural Defense: ACP reinforces the tooth’s natural defense system by providing essential minerals only when they are needed, thus promoting remineralization.
  • Longevity: ACP has a long lifespan in the oral cavity and does not wash out easily, making it effective for sustained protection.

3. Applications in Dentistry

A. Preventive Applications

  • Remineralization: ACP is used in various dental products, such as toothpaste and mouth rinses, to promote the remineralization of early carious lesions and enhance enamel strength.
  • Fluoride Combination: ACP can be combined with fluoride to enhance its effectiveness in preventing caries and promoting remineralization.

B. Restorative Applications

  • Dental Materials: ACP is incorporated into restorative materials, such as composites and sealants, to improve their mechanical properties and provide additional protection against caries.
  • Cavity Liners and Bases: ACP can be used in cavity liners and bases to promote healing and remineralization of the underlying dentin.

Pin size

 

In general, increase in diameter of pin offers more retention but large sized pins can result in more stresses in dentin. Pins are available in four color coded sizes:

 

        Name

Pin diameter

Color code

·         Minuta

0.38 mm

Pink

·         Minikin

0.48mm

Red

·         Minim

0.61 mm

Silver

·         Regular

0.78 mm

Gold

 

Selection of pin size depends upon the following factors:

 

·            Amount of dentin present

·            Amount of retention required

 

For most posterior restorations, Minikin size of pins is used because they provide maximum retention without causing crazing in dentin.

A. Retention vs. Stress

  • Retention: Generally, an increase in the diameter of the pin offers more retention for the restoration.
  • Stress: However, larger pins can result in increased stresses in the dentin, which may lead to complications such as crazing or cracking of the tooth structure.

2. Factors Influencing Pin Size Selection

The selection of pin size depends on several factors:

A. Amount of Dentin Present

  • Assessment: The amount of remaining dentin is a critical factor in determining the appropriate pin size. More dentin allows for the use of larger pins, while less dentin may necessitate smaller pins to avoid excessive stress.

B. Amount of Retention Required

  • Retention Needs: The specific retention requirements of the restoration will also influence pin size selection. In cases where maximum retention is needed, larger pins may be considered, provided that sufficient dentin is available to accommodate them without causing damage.

3. Recommended Pin Size for Posterior Restorations

For most posterior restorations, the Minikin size pin (0.48 mm, color-coded red) is commonly used. This size provides a balance between adequate retention and minimizing the risk of causing crazing in the dentin.

Concepts in Dental Cavity Preparation and Restoration

In operative dentistry, understanding the anatomy of tooth preparations and the techniques used for effective restorations is crucial. The importance of wall convergence in Class I amalgam restorations, the use of dental floss with retainers, and specific considerations for preparing mandibular first premolars.

1. Pulpal Wall and Axial Wall

Pulpal Wall

  • Definition: The pulpal wall is an external wall of a cavity preparation that is perpendicular to both the long axis of the tooth and the occlusal surface of the pulp. It serves as a boundary for the pulp chamber.
  • Function: This wall is critical in protecting the pulp from external irritants and ensuring the integrity of the tooth structure during restorative procedures.

Axial Wall

  • Transition: Once the pulp has been removed, the pulpal wall becomes the axial wall.
  • Definition: The axial wall is an internal wall that is parallel to the long axis of the tooth. It plays a significant role in the retention and stability of the restoration.

2. Wall Convergence in Class I Amalgam Restorations

Facial and Lingual Walls

  • Convergence: In Class I amalgam restorations, the facial and lingual walls should always be made slightly occlusally convergent.
  • Importance:
    • Retention: Slight convergence helps in retaining the amalgam restoration by providing a mechanical interlock.
    • Prevention of Dislodgement: This design minimizes the risk of dislodgement of the restoration during functional loading.

Clinical Implications

  • Preparation Technique: When preparing a Class I cavity, clinicians should ensure that the facial and lingual walls are slightly angled towards the occlusal surface, promoting effective retention of the amalgam.

3. Use of Dental Floss with Retainers

Retainer Safety

  • Bow of the Retainer: The bow of the retainer should be tied with approximately 12 inches of dental floss.
  • Purpose:
    • Retrieval: The floss allows for easy retrieval of the retainer or any broken parts if they are accidentally swallowed or aspirated by the patient.
    • Patient Safety: This precaution enhances patient safety during dental procedures, particularly when using matrix retainers for restorations.

Clinical Practice

  • Implementation: Dental professionals should routinely tie dental floss to retainers as a standard safety measure, ensuring that it is easily accessible in case of an emergency.

4. Pulpal Wall Considerations in Mandibular First Premolars

Anatomy of the Mandibular First Premolar

  • Pulpal Wall Orientation: The pulpal wall of the mandibular first premolar declines lingually. This anatomical feature is important to consider during cavity preparation.
  • Pulp Horn Location:
    • The facial pulp horn is prominent and located at a higher level than the lingual pulp horn. This asymmetry necessitates careful attention during preparation to avoid pulp exposure.

Bur Positioning

  • Tilting the Bur: When preparing the cavity, the bur should be tilted lingually to prevent exposure of the facial pulp horn.
  • Technique: This technique helps ensure that the preparation is adequately shaped while protecting the pulp from inadvertent injury.

Refractory materials are essential in the field of dentistry, particularly in the branch of conservative dentistry and prosthodontics, for the fabrication of various restorations and appliances. These materials are characterized by their ability to withstand high temperatures without undergoing significant deformation or chemical change. This is crucial for the longevity and stability of the dental work. The primary function of refractory materials is to provide a precise and durable mold or pattern for the casting of metal restorations, such as crowns, bridges, and inlays/onlays.

Refractory materials include:

- Plaster of Paris: The most commonly used refractory material in dentistry, plaster is composed of calcium sulfate hemihydrate. It is mixed with water to form a paste that is used to make study models and casts. It has a relatively low expansion coefficient and is easy to manipulate, making it suitable for various applications.


- Dental stone: A more precise alternative to plaster, dental stone is a type of gypsum product that offers higher strength and less dimensional change. It is commonly used for master models and die fabrication due to its excellent surface detail reproduction.


- Investment materials: Used in the casting process of fabricating indirect restorations, investment materials are refractory and encapsulate the wax pattern to create a mold. They can withstand the high temperatures required for metal casting without distortion.


- Zirconia: A newer refractory material gaining popularity, zirconia is a ceramic that is used for the fabrication of all-ceramic crowns and bridges. It is extremely durable and has a high resistance to wear and fracture.


- Refractory die materials: These are used in the production of metal-ceramic restorations. They are capable of withstanding the high temperatures involved in the ceramic firing process and provide a reliable foundation for the ceramic layers.

The selection of a refractory material is based on factors such as the intended use, the required accuracy, and the specific properties needed for the final restoration. The material must have a low thermal expansion coefficient to minimize the thermal stress during the casting process and maintain the integrity of the final product. Additionally, the material should be able to reproduce the fine details of the oral anatomy and have good physical and mechanical properties to ensure stability and longevity.

Refractory materials are typically used in the following procedures:

- Impression taking: Refractory materials are used to make models from the patient's impressions.
- Casting of metal restorations: A refractory mold is created from the model to cast the metal framework.
- Ceramic firing: Refractory die materials hold the ceramic in place while it is fired at high temperatures.
- Temporary restorations: Some refractory materials can be used to produce temporary restorations that are highly accurate and durable.

Refractory materials are critical for achieving the correct fit and function of dental restorations, as well as ensuring patient satisfaction with the aesthetics and comfort of the final product.

Pouring the Final Impression

Technique

  • Mixing Die Stone: A high-strength die stone is mixed using a vacuum mechanical mixer to ensure a homogenous mixture without air bubbles.
  • Pouring Process:
    • The die stone is poured into the impression using a vibrator and a No. 7 spatula.
    • The first increments should be applied in small amounts, allowing the material to flow into the remote corners and angles of the preparation without trapping air.
  • Surface Tension-Reducing Agents: These agents can be added to the die stone to enhance its flow properties, allowing it to penetrate deep into the internal corners of the impression.

Final Dimensions

  • The impression should be filled sufficiently so that the dies will be approximately 15 to 20 mm tall occluso-gingivally after trimming. This height is important for the stability and accuracy of the final restoration.

Glass ionomer cement is a tooth coloured material 
Material was based on reaction between silicate glass powder & polyacrylicacid.
They bond chemically to tooth structure & release fluoride for relatively long period

CLASSIFICATION 

Type I. For luting

Type II. For restoration 

Type II.1 Restorative esthetic 

Type II.2 Restorative reinforced

Type III. For liner & bases

Type IV. Fissure & sealent

Type V. As Orthodontic cement

Type VI. For core build up

Physical Properties

1. Low solubility
2. Coefficient of thermal expansion similar to dentin
3. Fluoride release and fluoride recharge
4. High compressive strengths
5. Bonds to tooth structure
6. Low flexural strength
7. Low shear strength
8. Dimensional change (slight expansion) (shrinks on setting, expands with water sorption)
9. Brittle
10.Lacks translucency
11.Rough surface texture

Indications for use of Type II glass ionomer cements 

1) non-stress bearing areas 

2) class III and V restorations in adults 

3) class I and II restorations in primary dentition 

4) temporary or “caries control” restorations 

5) crown margin repairs 

6) cement base under amalgam, resin, ceramics, direct and indirect gold 

7) core buildups when at least 3 walls of tooth are remaining (after crown preparation)

Contraindications 

1) high stress applications I. class IV and class II restorations II. cusp replacement III. core build-ups with less than 3 sound walls remaining

Composition

 

Factors affecting the rate or setting

1. Glass composition:Higher Alumina – Silica ratio, faster set and shorter working time.
2. Particle Size: finer the powder, faster the set.
3. Addition of Tartaric Acid:-Sharpens set without shortening the working time.
4. Relative proportions of the constituents: Greater the proportion of glass and lower the proportion of water, the faster the set.
5. Temperature

Setting Time

Type 1 - 4-5 min
type II - 7 min


PROPERTIES 

Adhesion :

- Glass ionomer cement bonds chemically to the tooth structure->reaction occur between carboxyl group of poly acid & calcium of hydroxyl apatite.
 
- Bonding with enamel is higher than that of dentin ,due to greater inorganic content. 

Esthetics :
-GIC is tooth coloured material & available in different shades.
Inferior to composites.
They lack translucency & rough surface texture.
Potential for discolouration & staining.

Biocompatibilty :

- Pulpal response to glass ionomer cement is favorable. 
- Pulpal response is mild due to 
- High buffering capacity of hydroxy apatite. 
- Large molecular weight of the polyacrylic acid ,which prevents entry into dentinal tubules. 

a) Pulp reaction – ZOE < Glass Ionomer < Zinc Phosphate 

b) Powder:liquid ratio influences acidity 

c) Solubility & Disintegration:-Initial solubility is high due to leaching of intermediate products.The complete setting reaction takes place in 24 hrs, cement should be protected from saliva during this period.

Anticariogenic properties :
- Fluoride is released from glass ionomer at the time of mixing & lies with in matrix.
Fluoride can be released out without affecting the physical properties of cement.

ADVANTAGE DISADVANTAGE

Dental Amalgam and Direct Gold Restorations

In restorative dentistry, understanding the properties of materials and the techniques used for their application is essential for achieving optimal outcomes.  .

1. Mechanical Properties of Amalgam

Compressive and Tensile Strength

  • Compressive Strength: Amalgam exhibits high compressive strength, which is essential for withstanding the forces of mastication. The minimum compressive strength of amalgam should be at least 310 MPa.
  • Tensile Strength: Amalgam has relatively low tensile strength, typically ranging between 48-70 MPa. This characteristic makes it more susceptible to fracture under tensile forces, which is why proper cavity design and placement techniques are critical.

Implications for Use

  • Cavity Design: The design of the cavity preparation should minimize the risk of tensile forces acting on the restoration. This can be achieved through appropriate wall angles and retention features.
  • Restoration Longevity: Understanding the mechanical properties of amalgam helps clinicians predict the longevity and performance of the restoration under functional loads.

2. Direct Gold Restorations

Requirements for Direct Gold Restorations

  • Ideal Surgical Field: A clean and dry field is essential for the successful placement of direct gold restorations. This ensures that the gold adheres properly and that contamination is minimized.
  • Conservative Cavity Preparation: The cavity preparation must be methodical and conservative, preserving as much healthy tooth structure as possible while providing adequate retention for the gold.
  • Systematic Condensation: The condensation of gold must be performed carefully to build a solid block of gold within the tooth. This involves using appropriate instruments and techniques to ensure that the gold is well-adapted to the cavity walls.

Condensation Technique

  • Building a Solid Block: The goal of the condensation procedure is to create a dense, solid mass of gold that will withstand occlusal forces and provide a durable restoration.

3. Gingival Displacement Techniques

Materials for Displacement

To effectively displace the gingival tissue during restorative procedures, various materials can be used, including:

  1. Heavy Weight Rubber Dam: Provides excellent isolation and displacement of gingival tissue.
  2. Plain Cotton Thread: A simple and effective method for gingival displacement.
  3. Epinephrine-Saturated String:
    • 1:1000 Epinephrine: Used for 10 minutes; not recommended for cardiac patients due to potential systemic effects.
  4. Aluminum Chloride Solutions:
    • 5% Aluminum Chloride Solution: Used for gingival displacement.
    • 20% Tannic Acid: Another option for controlling bleeding and displacing tissue.
    • 4% Levo Epinephrine with 9% Potassium Aluminum: Used for 10 minutes.
  5. Zinc Chloride or Ferric Sulfate:
    • 8% Zinc Chloride: Used for 3 minutes.
    • Ferric Sub Sulfate: Also used for 3 minutes.

Clinical Considerations

  • Selection of Material: The choice of material for gingival displacement should be based on the clinical situation, patient health, and the specific requirements of the procedure.

4. Condensation Technique for Gold

Force Application

  • Angle of Condensation: The force of condensation should be applied at a 45-degree angle to the cavity walls and floor during malleting. This orientation allows for maximum adaptation of the gold against the walls, floors, line angles, and point angles of the cavity.
  • Direction of Force: The forces must be directed at 90 degrees to any previously condensed gold. This technique ensures that the gold is compacted effectively and that there are no voids or gaps in the restoration.

Importance of Technique

  • Adaptation and Density: Proper condensation technique is critical for achieving optimal adaptation and density of the gold restoration, which contributes to its longevity and performance.

Explore by Exams