Talk to us?

Conservative Dentistry - NEETMDS- courses
NEET MDS Lessons
Conservative Dentistry

Concepts in Dental Cavity Preparation and Restoration

In operative dentistry, understanding the anatomy of tooth preparations and the techniques used for effective restorations is crucial. The importance of wall convergence in Class I amalgam restorations, the use of dental floss with retainers, and specific considerations for preparing mandibular first premolars.

1. Pulpal Wall and Axial Wall

Pulpal Wall

  • Definition: The pulpal wall is an external wall of a cavity preparation that is perpendicular to both the long axis of the tooth and the occlusal surface of the pulp. It serves as a boundary for the pulp chamber.
  • Function: This wall is critical in protecting the pulp from external irritants and ensuring the integrity of the tooth structure during restorative procedures.

Axial Wall

  • Transition: Once the pulp has been removed, the pulpal wall becomes the axial wall.
  • Definition: The axial wall is an internal wall that is parallel to the long axis of the tooth. It plays a significant role in the retention and stability of the restoration.

2. Wall Convergence in Class I Amalgam Restorations

Facial and Lingual Walls

  • Convergence: In Class I amalgam restorations, the facial and lingual walls should always be made slightly occlusally convergent.
  • Importance:
    • Retention: Slight convergence helps in retaining the amalgam restoration by providing a mechanical interlock.
    • Prevention of Dislodgement: This design minimizes the risk of dislodgement of the restoration during functional loading.

Clinical Implications

  • Preparation Technique: When preparing a Class I cavity, clinicians should ensure that the facial and lingual walls are slightly angled towards the occlusal surface, promoting effective retention of the amalgam.

3. Use of Dental Floss with Retainers

Retainer Safety

  • Bow of the Retainer: The bow of the retainer should be tied with approximately 12 inches of dental floss.
  • Purpose:
    • Retrieval: The floss allows for easy retrieval of the retainer or any broken parts if they are accidentally swallowed or aspirated by the patient.
    • Patient Safety: This precaution enhances patient safety during dental procedures, particularly when using matrix retainers for restorations.

Clinical Practice

  • Implementation: Dental professionals should routinely tie dental floss to retainers as a standard safety measure, ensuring that it is easily accessible in case of an emergency.

4. Pulpal Wall Considerations in Mandibular First Premolars

Anatomy of the Mandibular First Premolar

  • Pulpal Wall Orientation: The pulpal wall of the mandibular first premolar declines lingually. This anatomical feature is important to consider during cavity preparation.
  • Pulp Horn Location:
    • The facial pulp horn is prominent and located at a higher level than the lingual pulp horn. This asymmetry necessitates careful attention during preparation to avoid pulp exposure.

Bur Positioning

  • Tilting the Bur: When preparing the cavity, the bur should be tilted lingually to prevent exposure of the facial pulp horn.
  • Technique: This technique helps ensure that the preparation is adequately shaped while protecting the pulp from inadvertent injury.

Hybridization in Dental Bonding

Hybridization, as described by Nakabayashi in 1982, is a critical process in dental bonding that involves the formation of a hybrid layer. This hybrid layer plays a vital role in achieving micromechanical bonding between the tooth structure (dentin) and resin materials used in restorative dentistry.

1. Definition of Hybridization

Hybridization refers to the process of forming a hybrid layer at the interface between demineralized dentin and resin materials. This phenomenon is characterized by the interlocking of resin within the demineralized dentin surface, which enhances the bond strength between the tooth and the resin.

A. Formation of the Hybrid Layer

  • Conditioning Dentin: When dentin is treated with a conditioner (usually an acid), it removes minerals from the dentin, exposing the collagen fibril network and creating inter-fibrillar microporosities.
  • Application of Primer: A low-viscosity primer is then applied, which infiltrates these microporosities.
  • Polymerization: After the primer is applied, the resin monomers polymerize, forming the hybrid layer.

2. Zones of the Hybrid Layer

The hybrid layer is composed of three distinct zones, each with unique characteristics:

A. Top Layer

  • Composition: This layer consists of loosely arranged collagen fibrils and inter-fibrillar spaces that are filled with resin.
  • Function: The presence of resin in this layer enhances the bonding strength and provides a flexible interface that can accommodate stress during functional loading.

B. Middle Layer

  • Composition: In this zone, the hydroxyapatite crystals that were originally present in the dentin have been replaced by resin monomers due to the hybridization process.
  • Function: This replacement contributes to the mechanical properties of the hybrid layer, providing a strong bond between the dentin and the resin.

C. Bottom Layer

  • Composition: This layer consists of dentin that is almost unaffected, with a partly demineralized zone.
  • Function: The presence of this layer helps maintain the integrity of the underlying dentin structure while still allowing for effective bonding.

3. Importance of the Hybrid Layer

The hybrid layer is crucial for the success of adhesive dentistry for several reasons:

  • Micromechanical Bonding: The hybrid layer facilitates micromechanical bonding, which is essential for the retention of composite resins and other restorative materials.
  • Stress Distribution: The hybrid layer helps distribute stress during functional loading, reducing the risk of debonding or failure of the restoration.
  • Sealing Ability: A well-formed hybrid layer can help seal the dentin tubules, reducing sensitivity and protecting the pulp from potential irritants.

Glass ionomer cement is a tooth coloured material 
Material was based on reaction between silicate glass powder & polyacrylicacid.
They bond chemically to tooth structure & release fluoride for relatively long period

CLASSIFICATION 

Type I. For luting

Type II. For restoration 

Type II.1 Restorative esthetic 

Type II.2 Restorative reinforced

Type III. For liner & bases

Type IV. Fissure & sealent

Type V. As Orthodontic cement

Type VI. For core build up

Physical Properties

1. Low solubility
2. Coefficient of thermal expansion similar to dentin
3. Fluoride release and fluoride recharge
4. High compressive strengths
5. Bonds to tooth structure
6. Low flexural strength
7. Low shear strength
8. Dimensional change (slight expansion) (shrinks on setting, expands with water sorption)
9. Brittle
10.Lacks translucency
11.Rough surface texture

Indications for use of Type II glass ionomer cements 

1) non-stress bearing areas 

2) class III and V restorations in adults 

3) class I and II restorations in primary dentition 

4) temporary or “caries control” restorations 

5) crown margin repairs 

6) cement base under amalgam, resin, ceramics, direct and indirect gold 

7) core buildups when at least 3 walls of tooth are remaining (after crown preparation)

Contraindications 

1) high stress applications I. class IV and class II restorations II. cusp replacement III. core build-ups with less than 3 sound walls remaining

Composition

 

Factors affecting the rate or setting

1. Glass composition:Higher Alumina – Silica ratio, faster set and shorter working time.
2. Particle Size: finer the powder, faster the set.
3. Addition of Tartaric Acid:-Sharpens set without shortening the working time.
4. Relative proportions of the constituents: Greater the proportion of glass and lower the proportion of water, the faster the set.
5. Temperature

Setting Time

Type 1 - 4-5 min
type II - 7 min


PROPERTIES 

Adhesion :

- Glass ionomer cement bonds chemically to the tooth structure->reaction occur between carboxyl group of poly acid & calcium of hydroxyl apatite.
 
- Bonding with enamel is higher than that of dentin ,due to greater inorganic content. 

Esthetics :
-GIC is tooth coloured material & available in different shades.
Inferior to composites.
They lack translucency & rough surface texture.
Potential for discolouration & staining.

Biocompatibilty :

- Pulpal response to glass ionomer cement is favorable. 
- Pulpal response is mild due to 
- High buffering capacity of hydroxy apatite. 
- Large molecular weight of the polyacrylic acid ,which prevents entry into dentinal tubules. 

a) Pulp reaction – ZOE < Glass Ionomer < Zinc Phosphate 

b) Powder:liquid ratio influences acidity 

c) Solubility & Disintegration:-Initial solubility is high due to leaching of intermediate products.The complete setting reaction takes place in 24 hrs, cement should be protected from saliva during this period.

Anticariogenic properties :
- Fluoride is released from glass ionomer at the time of mixing & lies with in matrix.
Fluoride can be released out without affecting the physical properties of cement.

ADVANTAGE DISADVANTAGE

Supporting Cusps in Dental Occlusion

Supporting cusps, also known as stamp cusps, centric holding cusps, or holding cusps, play a crucial role in dental occlusion and function. They are essential for effective chewing and maintaining the vertical dimension of the face. This guide will outline the characteristics, functions, and clinical significance of supporting cusps.

Supporting Cusps: These are the cusps of the maxillary and mandibular teeth that make contact during maximum intercuspation (MI) and are primarily responsible for supporting the vertical dimension of the face and facilitating effective chewing.

Location

  • Maxillary Supporting Cusps: Located on the lingual occlusal line of the maxillary teeth.
  • Mandibular Supporting Cusps: Located on the facial occlusal line of the mandibular teeth.

Functions of Supporting Cusps

A. Chewing Efficiency

  • Mortar and Pestle Action: Supporting cusps contact the opposing teeth in their corresponding faciolingual center on a marginal ridge or a fossa, allowing them to cut, crush, and grind fibrous food effectively.
  • Food Reduction: The natural tooth form, with its multiple ridges and grooves, aids in the reduction of the food bolus during chewing.

B. Stability and Alignment

  • Preventing Drifting: Supporting cusps help prevent the drifting and passive eruption of teeth, maintaining proper occlusal relationships.

Characteristics of Supporting Cusps

Supporting cusps can be identified by the following five characteristic features:

  1. Contact in Maximum Intercuspation (MI): They make contact with the opposing tooth during MI, providing stability in occlusion.

  2. Support for Vertical Dimension: They contribute to maintaining the vertical dimension of the face, which is essential for proper facial aesthetics and function.

  3. Proximity to Faciolingual Center: Supporting cusps are located nearer to the faciolingual center of the tooth compared to nonsupporting cusps, enhancing their functional role.

  4. Potential for Contact on Outer Incline: The outer incline of supporting cusps has the potential for contact with opposing teeth, facilitating effective occlusion.

  5. Broader, Rounded Cusp Ridges: Supporting cusps have broader and more rounded cusp ridges than nonsupporting cusps, making them better suited for crushing food.

Clinical Significance

A. Occlusal Relationships

  • Maxillary vs. Mandibular Arch: The maxillary arch is larger than the mandibular arch, resulting in the supporting cusps of the maxilla being more robust and better suited for crushing food than those of the mandible.

B. Lingual Tilt of Posterior Teeth

  • Height of Supporting Cusps: The lingual tilt of the posterior teeth increases the relative height of the supporting cusps compared to nonsupporting cusps, which can obscure central fossa contacts.

C. Restoration Considerations

  • Restoration Fabrication: During the fabrication of restorations, it is crucial to ensure that supporting cusps do not contact opposing teeth in a manner that results in lateral deflection. Instead, restorations should provide contacts on plateaus or smoothly concave fossae to direct masticatory forces parallel to the long axes of the teeth.

Rotational Speeds of Dental Instruments

1. Measurement of Rotational Speed

Revolutions Per Minute (RPM)

  • Definition: The rotational speed of dental instruments is measured in revolutions per minute (rpm), indicating how many complete rotations the instrument makes in one minute.
  • Importance: Understanding the rpm is essential for selecting the appropriate instrument for specific dental procedures, as different speeds are suited for different tasks.


2. Speed Ranges of Dental Instruments

A. Low-Speed Instruments

  • Speed Range: Below 12,000 rpm.
  • Applications:
    • Finishing and Polishing: Low-speed handpieces are commonly used for finishing and polishing restorations, as they provide greater control and reduce the risk of overheating the tooth structure.
    • Cavity Preparation: They can also be used for initial cavity preparation, especially in areas where precision is required.
  • Instruments: Low-speed handpieces, contra-angle attachments, and slow-speed burs.

B. Medium-Speed Instruments

  • Speed Range: 12,000 to 200,000 rpm.
  • Applications:
    • Cavity Preparation: Medium-speed handpieces are often used for more aggressive cavity preparation and tooth reduction, providing a balance between speed and control.
    • Crown Preparation: They are suitable for preparing teeth for crowns and other restorations.
  • Instruments: Medium-speed handpieces and specific burs designed for this speed range.

C. High-Speed Instruments

  • Speed Range: Above 200,000 rpm.
  • Applications:
    • Rapid Cutting: High-speed handpieces are primarily used for cutting hard dental tissues, such as enamel and dentin, due to their ability to remove material quickly and efficiently.
    • Cavity Preparation: They are commonly used for cavity preparations, crown preparations, and other procedures requiring rapid tooth reduction.
  • Instruments: High-speed handpieces and diamond burs, which are designed to withstand the high speeds and provide effective cutting.


3. Clinical Implications

A. Efficiency and Effectiveness

  • Material Removal: Higher speeds allow for faster material removal, which can reduce chair time for patients and improve workflow in the dental office.
  • Precision: Lower speeds provide greater control, which is essential for delicate procedures and finishing work.

B. Heat Generation

  • Risk of Overheating: High-speed instruments can generate significant heat, which may lead to pulpal damage if not managed properly. Adequate cooling with water spray is essential during high-speed procedures to prevent overheating of the tooth.

C. Instrument Selection

  • Choosing the Right Speed: Dentists must select the appropriate speed based on the procedure being performed, the type of material being cut, and the desired outcome. Understanding the characteristics of each speed range helps in making informed decisions.

Nursing Bottle Caries

Nursing bottle caries, also known as early childhood caries (ECC), is a significant dental issue that affects infants and young children. Understanding the etiological agents involved in this condition is crucial for prevention and management. .

1. Pathogenic Microorganism

A. Streptococcus mutans

  • RoleStreptococcus mutans is the primary microorganism responsible for the development of nursing bottle caries. It colonizes the teeth after they erupt into the oral cavity.
  • Transmission: This bacterium is typically transmitted to the infant’s mouth from the mother, often through saliva.
  • Virulence Factors:
    • Colonization: It effectively adheres to tooth surfaces, establishing a foothold for caries development.
    • Acid ProductionS. mutans produces large amounts of acid as a byproduct of carbohydrate fermentation, leading to demineralization of tooth enamel.
    • Extracellular Polysaccharides: It synthesizes significant quantities of extracellular polysaccharides, which promote plaque formation and enhance bacterial adherence to teeth.

2. Substrate (Fermentable Carbohydrates)

A. Sources of Fermentable Carbohydrates

  • Fermentable carbohydrates are utilized by S. mutans to form dextrans, which facilitate bacterial adhesion to tooth surfaces and contribute to acid production. Common sources include:
    • Bovine Milk or Milk Formulas: Often high in lactose, which can be fermented by bacteria.
    • Human Milk: Breastfeeding on demand can expose teeth to sugars.
    • Fruit Juices and Sweet Liquids: These are often high in sugars and can contribute to caries.
    • Sweet Syrups: Such as those found in vitamin preparations.
    • Pacifiers Dipped in Sugary Solutions: This practice can introduce sugars directly to the oral cavity.
    • Chocolates and Other Sweets: These can provide a continuous source of fermentable carbohydrates.

3. Host Factors

A. Tooth Structure

  • Host for Microorganisms: The tooth itself serves as the host for S. mutans and other cariogenic bacteria.
  • Susceptibility Factors:
    • Hypomineralization or Hypoplasia: Defects in enamel development can increase susceptibility to caries.
    • Thin Enamel and Developmental Grooves: These anatomical features can create areas that are more prone to plaque accumulation and caries.

4. Time

A. Duration of Exposure

  • Sleeping with a Bottle: The longer a child sleeps with a bottle in their mouth, the higher the risk of developing caries. This is due to:
    • Decreased Salivary Flow: Saliva plays a crucial role in neutralizing acids and washing away food particles.
    • Prolonged Carbohydrate Accumulation: The swallowing reflex is diminished during sleep, allowing carbohydrates to remain in the mouth longer.

5. Other Predisposing Factors

  • Parental Overindulgence: Excessive use of sugary foods and drinks can increase caries risk.
  • Sleep Patterns: Children who sleep less may have increased exposure to cariogenic factors.
  • Malnutrition: Nutritional deficiencies can affect oral health and increase susceptibility to caries.
  • Crowded Living Conditions: These may limit access to dental care and hygiene practices.
  • Decreased Salivary Function: Conditions such as iron deficiency and exposure to lead can impair salivary function, increasing caries susceptibility.

Clinical Features of Nursing Bottle Caries

  • Intraoral Decay Pattern: The decay pattern associated with nursing bottle caries is characteristic and pathognomonic, often involving the maxillary incisors and molars.
  • Progression of Lesions: Lesions typically progress rapidly, leading to extensive decay if not addressed promptly.

Management of Nursing Bottle Caries

First Visit

  • Lesion Management: Excavation and restoration of carious lesions.
  • Abscess Drainage: If present, abscesses should be drained.
  • Radiographs: Obtain necessary imaging to assess the extent of caries.
  • Diet Chart: Provide a diet chart for parents to record the child's diet for one week.
  • Parent Counseling: Educate parents on oral hygiene and dietary practices.
  • Topical Fluoride: Administer topical fluoride to strengthen enamel.

Second Visit

  • Diet Analysis: Review the diet chart with the parents.
  • Sugar Control: Identify and isolate sugar sources in the diet and provide instructions to control sugar exposure.
  • Caries Activity Tests: Conduct tests to assess the activity of carious lesions.

Third Visit

  • Endodontic Treatment: If necessary, perform root canal treatment on affected teeth.
  • Extractions: Remove any non-restorable teeth, followed by space maintenance if needed.
  • Crowns: Place crowns on teeth that require restoration.
  • Recall Schedule: Schedule follow-up visits every three months to monitor progress and maintain oral health.

Pouring the Final Impression

Technique

  • Mixing Die Stone: A high-strength die stone is mixed using a vacuum mechanical mixer to ensure a homogenous mixture without air bubbles.
  • Pouring Process:
    • The die stone is poured into the impression using a vibrator and a No. 7 spatula.
    • The first increments should be applied in small amounts, allowing the material to flow into the remote corners and angles of the preparation without trapping air.
  • Surface Tension-Reducing Agents: These agents can be added to the die stone to enhance its flow properties, allowing it to penetrate deep into the internal corners of the impression.

Final Dimensions

  • The impression should be filled sufficiently so that the dies will be approximately 15 to 20 mm tall occluso-gingivally after trimming. This height is important for the stability and accuracy of the final restoration.

Explore by Exams