Talk to us?

- NEETMDS- courses
NEET MDS Lessons
Conservative Dentistry

Amorphous Calcium Phosphate (ACP)

Amorphous Calcium Phosphate (ACP) is a significant compound in dental materials and oral health, known for its role in the biological formation of hydroxyapatite, the primary mineral component of tooth enamel and bone. ACP has both preventive and restorative applications in dentistry, making it a valuable material for enhancing oral health.

1. Biological Role

A. Precursor to Hydroxyapatite

  • Formation: ACP serves as an antecedent in the biological formation of hydroxyapatite (HAP), which is essential for the mineralization of teeth and bones.
  • Conversion: At neutral to high pH levels, ACP remains in its original amorphous form. However, when exposed to low pH conditions (pH < 5-8), ACP converts into hydroxyapatite, helping to replace the HAP lost due to acidic demineralization.

2. Properties of ACP

A. pH-Dependent Behavior

  • Neutral/High pH: At neutral or high pH levels, ACP remains stable and does not dissolve.
  • Low pH: When the pH drops below 5-8, ACP begins to dissolve, releasing calcium (Ca²⁺) and phosphate (PO₄³⁻) ions. This process is crucial in areas where enamel demineralization has occurred due to acid exposure.

B. Smart Material Characteristics

ACP is often referred to as a "smart material" due to its unique properties:

  • Targeted Release: ACP releases calcium and phosphate ions specifically at low pH levels, which is when the tooth is at risk of demineralization.
  • Acid Neutralization: The released calcium and phosphate ions help neutralize acids in the oral environment, effectively buffering the pH and reducing the risk of further enamel erosion.
  • Reinforcement of Natural Defense: ACP reinforces the tooth’s natural defense system by providing essential minerals only when they are needed, thus promoting remineralization.
  • Longevity: ACP has a long lifespan in the oral cavity and does not wash out easily, making it effective for sustained protection.

3. Applications in Dentistry

A. Preventive Applications

  • Remineralization: ACP is used in various dental products, such as toothpaste and mouth rinses, to promote the remineralization of early carious lesions and enhance enamel strength.
  • Fluoride Combination: ACP can be combined with fluoride to enhance its effectiveness in preventing caries and promoting remineralization.

B. Restorative Applications

  • Dental Materials: ACP is incorporated into restorative materials, such as composites and sealants, to improve their mechanical properties and provide additional protection against caries.
  • Cavity Liners and Bases: ACP can be used in cavity liners and bases to promote healing and remineralization of the underlying dentin.

Incipient Lesions

Characteristics of Incipient Lesions

  • Body of the Lesion: The body of the incipient lesion is the largest portion during the demineralizing phase, characterized by varying pore volumes (5% at the periphery to 25% at the center).
  • Striae of Retzius: The striae of Retzius are well marked in the body of the lesion, indicating areas of preferential mineral dissolution. These striae represent the incremental growth lines of enamel and are critical in understanding caries progression.

Caries Penetration

  • Initial Penetration: The first penetration of caries occurs via the striae of Retzius, highlighting the importance of these structures in the carious process. Understanding this can aid in the development of preventive strategies and treatment plans aimed at early intervention and management of carious lesions.

Inlay Preparation

Inlay preparations are a common restorative procedure in dentistry, particularly for Class II restorations.

1. Definitions

A. Inlay

  • An inlay is a restoration that is fabricated using an indirect procedure. It involves one or more tooth surfaces and may cap one or more cusps but does not cover all cusps.

2. Class II Inlay (Cast Metal) Preparation Procedure

A. Burs Used

  • Recommended Burs:
    • No. 271: For initial cavity preparation.
    • No. 169 L: For refining the cavity shape and creating the proximal box.

B. Initial Cavity Preparation

  • Similar to Class II Amalgam: The initial cavity preparation is performed similarly to that for Class II amalgam restorations, with the following differences:
    • Occlusal Entry Cut Depth: The initial occlusal entry should be approximately 1.5 mm deep.
    • Cavity Margins Divergence: All cavity margins must diverge occlusally by 2-5 degrees:
      • 2 degrees: When the vertical walls of the cavity are short.
      • 5 degrees: When the vertical walls are long.
    • Proximal Box Margins: The proximal box margins should clear the adjacent tooth by 0.2-0.5 mm, with 0.5 ± 0.2 mm being ideal.

C. Preparation of Bevels and Flares

  • Primary and Secondary Flares:
    • Flares are created on the facial and lingual proximal walls, forming the walls in two planes.
    • The secondary flare widens the proximal box, which initially had a clearance of 0.5 mm from the adjacent tooth. This results in:
      • Marginal Metal in Embrasure Area: Placing the marginal metal in the embrasure area allows for better self-cleansing and easier access for cleaning and polishing without excessive dentin removal.
      • Marginal Metal Angle: A 40-degree angle, which is easily burnishable and strong.
      • Enamel Margin Angle: A 140-degree angle, which blunts the enamel margin and increases its strength.
    • Note: Secondary flares are omitted on the mesiofacial proximal walls of maxillary premolars and first molars for esthetic reasons.

D. Gingival Bevels

  • Width: Gingival bevels should be 0.5-1 mm wide and blend with the secondary flare, resulting in a marginal metal angle of 30 degrees.
  • Purpose:
    • Removal of weak enamel.
    • Creation of a burnishable 30-degree marginal metal.
    • Production of a lap sliding fit at the gingival margin.

E. Occlusal Bevels

  • Location: Present on the cavosurface margins of the cavity on the occlusal surface.
  • Width: Approximately 1/4th the depth of the respective wall, resulting in a marginal metal angle of 40 degrees.

3. Capping Cusps

A. Indications

  • Cusp Involvement: Capping cusps is indicated when more than 1/2 of a cusp is involved and is mandatory when 2/3 or more is involved.

B. Advantages

  • Weak Enamel Removal: Helps in removing weak enamel.
  • Cavity Margin Location: Moves the cavity margin away from occlusal areas subjected to heavy forces.
  • Visualization of Caries: Aids in visualizing the extent of caries, increasing convenience during preparation.

C. Cusp Reduction

  • Uniform Metal Thickness: Cusp reduction must provide for a uniform 1.5 mm metal thickness over the reduced cusps.
  • Facial Cusp Reduction: For maxillary premolars and first molars, the reduction of the facial cusp should be 0.75-1 mm for esthetic reasons.

D. Reverse Bevel (Counter Bevel)

  • Definition: A bevel given on the margins of the reduced cusp.
  • Width: Varies to extend beyond any occlusal contact with opposing teeth, resulting in a marginal metal angle of 30 degrees.

E. Retention Considerations

  • Retention Form: Cusp reduction decreases the retention form due to reduced vertical wall height. Therefore, proximal retentive grooves are usually recommended.
  • Collar and Skirt Features: These features can enhance retention and resistance form.

Fillers in composite resin are inorganic particles that enhance the mechanical and optical properties of the material. They come in various sizes, shapes, and compositions. The choice of filler influences the resin's strength, wear resistance, and polishability.

Types of fillers:
- Silica: Common in microfilled and hybrid composites, providing good aesthetics and polishability.
- Glass particles: Used in macrofill and microfill composites for high strength and durability.
- Ceramic particles: Provide excellent biocompatibility and wear resistance.
- Zirconia/silica: Combined to improve the strength and translucency of the composite.
- Nanoparticles: Enhance the resin's physical properties, including strength and wear resistance, while also offering improved aesthetics.

Filler size:
- Macrofillers: 10-50 μm, suitable for class I and II restorations where high strength is not essential but a good seal is required.
- Microfillers: 0.01-10 μm, used for fine detailing and aesthetic restorations due to their ability to blend with the tooth structure.
- Hybrid fillers: Combine macro and microfillers for restorations requiring both strength and aesthetics.

Filler loading: The amount of filler in the resin affects the material's physical properties:
- High filler loading: Increases strength, wear resistance, and decreases shrinkage but can compromise the resin's ability to adapt to the tooth structure.
- Low filler loading: Provides better flow and marginal adaptation but may result in lower strength and durability.

Filler-resin interaction:
- Chemical bonding: Improves the adhesion between the filler and the resin matrix.
- Mechanical interlocking: Larger filler particles create a stronger mechanical bond within the resin.
- Polymerization shrinkage: The filler can reduce shrinkage stress, which is crucial for minimizing marginal gaps and microleakage.

Selection criteria:
- Clinical requirements: The filler should meet the specific needs of the restoration, such as strength, wear resistance, and aesthetics.
- Tooth location: Anterior teeth may require more translucent fillers for better aesthetics, while posterior teeth need stronger, more opaque materials.
- Patient's preferences: Some patients may prefer more natural-looking restorations.
- Clinician's skill: Different fillers may require varying application techniques and curing times.

Glass ionomer cement is a tooth coloured material 
Material was based on reaction between silicate glass powder & polyacrylicacid.
They bond chemically to tooth structure & release fluoride for relatively long period

CLASSIFICATION 

Type I. For luting

Type II. For restoration 

Type II.1 Restorative esthetic 

Type II.2 Restorative reinforced

Type III. For liner & bases

Type IV. Fissure & sealent

Type V. As Orthodontic cement

Type VI. For core build up

Physical Properties

1. Low solubility
2. Coefficient of thermal expansion similar to dentin
3. Fluoride release and fluoride recharge
4. High compressive strengths
5. Bonds to tooth structure
6. Low flexural strength
7. Low shear strength
8. Dimensional change (slight expansion) (shrinks on setting, expands with water sorption)
9. Brittle
10.Lacks translucency
11.Rough surface texture

Indications for use of Type II glass ionomer cements 

1) non-stress bearing areas 

2) class III and V restorations in adults 

3) class I and II restorations in primary dentition 

4) temporary or “caries control” restorations 

5) crown margin repairs 

6) cement base under amalgam, resin, ceramics, direct and indirect gold 

7) core buildups when at least 3 walls of tooth are remaining (after crown preparation)

Contraindications 

1) high stress applications I. class IV and class II restorations II. cusp replacement III. core build-ups with less than 3 sound walls remaining

Composition

 

Factors affecting the rate or setting

1. Glass composition:Higher Alumina – Silica ratio, faster set and shorter working time.
2. Particle Size: finer the powder, faster the set.
3. Addition of Tartaric Acid:-Sharpens set without shortening the working time.
4. Relative proportions of the constituents: Greater the proportion of glass and lower the proportion of water, the faster the set.
5. Temperature

Setting Time

Type 1 - 4-5 min
type II - 7 min


PROPERTIES 

Adhesion :

- Glass ionomer cement bonds chemically to the tooth structure->reaction occur between carboxyl group of poly acid & calcium of hydroxyl apatite.
 
- Bonding with enamel is higher than that of dentin ,due to greater inorganic content. 

Esthetics :
-GIC is tooth coloured material & available in different shades.
Inferior to composites.
They lack translucency & rough surface texture.
Potential for discolouration & staining.

Biocompatibilty :

- Pulpal response to glass ionomer cement is favorable. 
- Pulpal response is mild due to 
- High buffering capacity of hydroxy apatite. 
- Large molecular weight of the polyacrylic acid ,which prevents entry into dentinal tubules. 

a) Pulp reaction – ZOE < Glass Ionomer < Zinc Phosphate 

b) Powder:liquid ratio influences acidity 

c) Solubility & Disintegration:-Initial solubility is high due to leaching of intermediate products.The complete setting reaction takes place in 24 hrs, cement should be protected from saliva during this period.

Anticariogenic properties :
- Fluoride is released from glass ionomer at the time of mixing & lies with in matrix.
Fluoride can be released out without affecting the physical properties of cement.

ADVANTAGE DISADVANTAGE

Hybridization in Dental Bonding

Hybridization, as described by Nakabayashi in 1982, is a critical process in dental bonding that involves the formation of a hybrid layer. This hybrid layer plays a vital role in achieving micromechanical bonding between the tooth structure (dentin) and resin materials used in restorative dentistry.

1. Definition of Hybridization

Hybridization refers to the process of forming a hybrid layer at the interface between demineralized dentin and resin materials. This phenomenon is characterized by the interlocking of resin within the demineralized dentin surface, which enhances the bond strength between the tooth and the resin.

A. Formation of the Hybrid Layer

  • Conditioning Dentin: When dentin is treated with a conditioner (usually an acid), it removes minerals from the dentin, exposing the collagen fibril network and creating inter-fibrillar microporosities.
  • Application of Primer: A low-viscosity primer is then applied, which infiltrates these microporosities.
  • Polymerization: After the primer is applied, the resin monomers polymerize, forming the hybrid layer.

2. Zones of the Hybrid Layer

The hybrid layer is composed of three distinct zones, each with unique characteristics:

A. Top Layer

  • Composition: This layer consists of loosely arranged collagen fibrils and inter-fibrillar spaces that are filled with resin.
  • Function: The presence of resin in this layer enhances the bonding strength and provides a flexible interface that can accommodate stress during functional loading.

B. Middle Layer

  • Composition: In this zone, the hydroxyapatite crystals that were originally present in the dentin have been replaced by resin monomers due to the hybridization process.
  • Function: This replacement contributes to the mechanical properties of the hybrid layer, providing a strong bond between the dentin and the resin.

C. Bottom Layer

  • Composition: This layer consists of dentin that is almost unaffected, with a partly demineralized zone.
  • Function: The presence of this layer helps maintain the integrity of the underlying dentin structure while still allowing for effective bonding.

3. Importance of the Hybrid Layer

The hybrid layer is crucial for the success of adhesive dentistry for several reasons:

  • Micromechanical Bonding: The hybrid layer facilitates micromechanical bonding, which is essential for the retention of composite resins and other restorative materials.
  • Stress Distribution: The hybrid layer helps distribute stress during functional loading, reducing the risk of debonding or failure of the restoration.
  • Sealing Ability: A well-formed hybrid layer can help seal the dentin tubules, reducing sensitivity and protecting the pulp from potential irritants.

Resin Modified Glass Ionomer Cements (RMGIs)

Resin Modified Glass Ionomer Cements (RMGIs) represent a significant advancement in dental materials, combining the beneficial properties of both glass ionomer cements and composite resins. This overview will discuss the composition, advantages, and disadvantages of RMGIs, highlighting their role in modern dentistry.

1. Composition of Resin Modified Glass Ionomer Cements

A. Introduction

  • First Introduced: RMGIs were first introduced as Vitrebond (3M), utilizing a powder-liquid system designed to enhance the properties of traditional glass ionomer cements.

B. Components

  • Powder: The powder component consists of fluorosilicate glass, which provides the material with its glass ionomer properties. It also contains a photoinitiator or chemical initiator to facilitate setting.
  • Liquid: The liquid component contains:
    • 15 to 25% Resin Component: Typically in the form of Hydroxyethyl Methacrylate (HEMA), which enhances the material's bonding and aesthetic properties.
    • Polyacrylic Acid Copolymer: This component contributes to the chemical adhesion properties of the cement.
    • Photoinitiator and Water: These components are essential for the setting reaction and workability of the material.

2. Advantages of Resin Modified Glass Ionomer Cements

RMGIs offer a range of benefits that make them suitable for various dental applications:

  1. Extended Working Time: RMGIs provide a longer working time compared to traditional glass ionomers, allowing for more flexibility during placement.

  2. Control on Setting: The setting reaction can be controlled through light curing, which allows for adjustments before the material hardens.

  3. Good Adaptation: RMGIs exhibit excellent adaptation to tooth structure, which helps minimize gaps and improve the seal.

  4. Chemical Adhesion to Enamel and Dentin: RMGIs bond chemically to both enamel and dentin, enhancing retention and reducing the risk of microleakage.

  5. Fluoride Release: Like traditional glass ionomers, RMGIs release fluoride, which can help in the prevention of secondary caries.

  6. Improved Aesthetics: The resin component allows for better color matching and aesthetics compared to conventional glass ionomers.

  7. Low Interfacial Shrinkage Stress: RMGIs exhibit lower shrinkage stress upon setting compared to composite resins, reducing the risk of debonding or gap formation.

  8. Superior Strength Characteristics: RMGIs generally have improved mechanical properties, making them suitable for a wider range of clinical applications.

3. Disadvantages of Resin Modified Glass Ionomer Cements

Despite their advantages, RMGIs also have some limitations:

  1. Shrinkage on Setting: RMGIs can experience some degree of shrinkage during the setting process, which may affect the marginal integrity of the restoration.

  2. Limited Depth of Cure: The depth of cure can be limited, especially when using more opaque lining cements. This can affect the effectiveness of the material in deeper cavities.

Explore by Exams