NEET MDS Lessons
Conservative Dentistry
Nursing Caries and Rampant Caries
Nursing caries and rampant caries are both forms of dental caries that can lead to significant oral health issues, particularly in children.
Nursing Caries
- Nursing Caries: A specific form of rampant caries that primarily affects infants and toddlers, characterized by a distinct pattern of decay.
Age of Occurrence
- Age Group: Typically seen in infants and toddlers, particularly those who are bottle-fed or breastfed on demand.
Dentition Involved
- Affected Teeth: Primarily affects the primary dentition, especially the maxillary incisors and molars. Notably, the mandibular incisors are usually spared.
Characteristic Features
- Decay Pattern:
- Involves maxillary incisors first, followed by molars.
- Mandibular incisors are not affected due to protective factors.
- Rapid Lesion Development: New lesions appear quickly, indicating acute decay rather than chronic neglect.
Etiology
- Feeding Practices:
- Improper feeding practices are the primary cause, including:
- Bottle feeding before sleep.
- Pacifiers dipped in honey or other sweeteners.
- Prolonged at-will breastfeeding.
- Improper feeding practices are the primary cause, including:
Treatment
- Early Detection: If detected early, nursing caries can
be managed with:
- Topical fluoride applications.
- Education for parents on proper feeding and oral hygiene.
- Maintenance: Focus on maintaining teeth until the transition to permanent dentition occurs.
Prevention
- Education: Emphasis on educating prospective and new mothers about proper feeding practices and oral hygiene to prevent nursing caries.
Rampant Caries
- Rampant Caries: A more generalized and acute form of caries that can occur at any age, characterized by widespread decay and early pulpal involvement.
Age of Occurrence
- Age Group: Can be seen at all ages, including adolescence and adulthood.
Dentition Involved
- Affected Teeth: Affects both primary and permanent dentition, including teeth that are typically resistant to decay.
Characteristic Features
- Decay Pattern:
- Involves surfaces that are usually immune to decay, including mandibular incisors.
- Rapid appearance of new lesions, indicating a more aggressive form of caries.
Etiology
- Multifactorial Causes: Rampant caries is influenced by
a combination of factors, including:
- Frequent snacking and excessive intake of sticky refined carbohydrates.
- Decreased salivary flow.
- Genetic predisposition.
Treatment
- Pulp Therapy:
- Often requires more extensive treatment, including pulp therapy for teeth with multiple pulp exposures.
- Long-term treatment may be necessary, especially when permanent dentition is involved.
Prevention
- Mass Education: Dental health education should be provided at a community level, targeting individuals of all ages to promote good oral hygiene and dietary practices.
Key Differences
Mandibular Anterior Teeth
- Nursing Caries: Mandibular incisors are spared due to:
- Protection from the tongue.
- Cleaning action of saliva, aided by the proximity of the sublingual gland ducts.
- Rampant Caries: Mandibular incisors can be affected, as this condition does not spare teeth that are typically resistant to decay.
Carisolv
Carisolv is a dental caries removal system that offers a unique approach to the treatment of carious dentin. It differs from traditional methods, such as Caridex, by utilizing amino acids and a lower concentration of sodium hypochlorite. Below is an overview of its components, mechanism of action, application process, and advantages.
1. Components of Carisolv
A. Red Gel (Solution A)
- Composition:
- Amino Acids: Contains 0.1 M of three amino acids:
- I-Glutamic Acid
- I-Leucine
- I-Lysine
- Sodium Hydroxide (NaOH): Used to adjust pH.
- Sodium Hypochlorite (NaOCl): Present at a lower concentration compared to Caridex.
- Erythrosine: A dye that provides color to the gel, aiding in visualization during application.
- Purified Water: Used as a solvent.
- Amino Acids: Contains 0.1 M of three amino acids:
B. Clear Liquid (Solution B)
- Composition:
- Sodium Hypochlorite (NaOCl): Contains 0.5% NaOCl w/v, which contributes to the antimicrobial properties of the solution.
C. Storage and Preparation
- Temperature: The two separate gels are stored at 48°C before use and are allowed to return to room temperature prior to application.
2. Mechanism of Action
- Softening Carious Dentin: Carisolv is designed to soften carious dentin by chemically disrupting denatured collagen within the affected tissue.
- Collagen Disruption: The amino acids in the formulation play a crucial role in breaking down the collagen matrix, making it easier to remove the softened carious dentin.
- Scraping Away: After the dentin is softened, it is removed using specially designed hand instruments, allowing for precise and effective caries removal.
3. pH and Application Time
- Resultant pH: The pH of Carisolv is approximately 11, which is alkaline and conducive to the softening process.
- Application Time: The recommended application time for Carisolv is between 30 to 60 seconds, allowing for quick treatment of carious lesions.
4. Advantages
- Minimally Invasive: Carisolv offers a minimally invasive approach to caries removal, preserving healthy tooth structure while effectively treating carious dentin.
- Reduced Need for Rotary Instruments: The chemical action of Carisolv reduces the reliance on traditional rotary instruments, which can be beneficial for patients with anxiety or those requiring a gentler approach.
- Visualization: The presence of erythrosine allows for better visualization of the treated area, helping clinicians ensure complete removal of carious tissue.
Refractory materials include:
- Plaster of Paris: The most commonly used refractory material in dentistry, plaster is composed of calcium sulfate hemihydrate. It is mixed with water to form a paste that is used to make study models and casts. It has a relatively low expansion coefficient and is easy to manipulate, making it suitable for various applications.
- Dental stone: A more precise alternative to plaster, dental
stone is a type of gypsum product that offers higher strength and less
dimensional change. It is commonly used for master models and die fabrication
due to its excellent surface detail reproduction.
- Investment materials: Used in the casting process of fabricating indirect
restorations, investment materials are refractory and encapsulate the wax
pattern to create a mold. They can withstand the high temperatures required for
metal casting without distortion.
- Zirconia: A newer refractory material gaining popularity,
zirconia is a ceramic that is used for the fabrication of all-ceramic crowns and
bridges. It is extremely durable and has a high resistance to wear and fracture.
- Refractory die materials: These are used in the production of
metal-ceramic restorations. They are capable of withstanding the high
temperatures involved in the ceramic firing process and provide a reliable
foundation for the ceramic layers.
The selection of a refractory material is based on factors such as the intended
use, the required accuracy, and the specific properties needed for the final
restoration. The material must have a low thermal expansion coefficient to
minimize the thermal stress during the casting process and maintain the
integrity of the final product. Additionally, the material should be able to
reproduce the fine details of the oral anatomy and have good physical and
mechanical properties to ensure stability and longevity.
Refractory materials are typically used in the following procedures:
- Impression taking: Refractory materials are used to make models from the
patient's impressions.
- Casting of metal restorations: A refractory mold is created from the model to
cast the metal framework.
- Ceramic firing: Refractory die materials hold the ceramic in place while it is
fired at high temperatures.
- Temporary restorations: Some refractory materials can be used to produce
temporary restorations that are highly accurate and durable.
Refractory materials are critical for achieving the correct fit and function of
dental restorations, as well as ensuring patient satisfaction with the
aesthetics and comfort of the final product.
Pit and Fissure Sealants
Pit and fissure sealants are preventive dental materials applied to the occlusal surfaces of teeth to prevent caries in the pits and fissures. These sealants work by filling in the grooves and depressions on the tooth surface, thereby eliminating the sheltered environment where bacteria can thrive and cause decay.
Classification
Mitchell and Gordon (1990) classified pit and fissure sealants based on their composition and properties. While the specific classification details are not provided in the prompt, sealants can generally be categorized into:
- Resin-Based Sealants: These are the most common type, made from composite resins that provide good adhesion and durability.
- Glass Ionomer Sealants: These sealants release fluoride and bond chemically to the tooth structure, providing additional protection against caries.
- Polyacid-Modified Resin Sealants: These combine properties of both resin and glass ionomer sealants, offering improved adhesion and fluoride release.
Requisites of an Efficient Sealant
For a pit and fissure sealant to be effective, it should possess the following characteristics:
- Viscosity: The sealant should be viscous enough to penetrate deep into pits and fissures.
- Adequate Working Time: Sufficient time for application and manipulation before curing.
- Low Sorption and Solubility: The material should have low water sorption and solubility to maintain its integrity in the oral environment.
- Rapid Cure: Quick curing time to allow for efficient application and patient comfort.
- Good Adhesion: Strong and prolonged adhesion to enamel to prevent microleakage.
- Wear Resistance: The sealant should withstand the forces of mastication without wearing away.
- Minimum Tissue Irritation: The material should be biocompatible and cause minimal irritation to oral tissues.
- Cariostatic Action: Ideally, the sealant should have properties that inhibit the growth of caries-causing bacteria.
Indications for Use
Pit and fissure sealants are indicated in the following situations:
- Newly Erupted Teeth: Particularly primary molars and permanent premolars and molars that have recently erupted (within the last 4 years).
- Open or Sticky Pits and Fissures: Teeth with pits and fissures that are not well coalesced and may trap food particles.
- Stained Pits and Fissures: Teeth with stained pits and fissures showing minimal decalcification.
Contraindications for Use
Pit and fissure sealants should not be used in the following situations:
- No Previous Caries Experience: Teeth that have no history of caries and have well-coalesced pits and fissures.
- Self-Cleansable Pits and Fissures: Wide pits and fissures that can be effectively cleaned by normal oral hygiene.
- Caries-Free for Over 4 Years: Teeth that have been caries-free for more than 4 years.
- Proximal Caries: Presence of caries on proximal surfaces, either clinically or radiographically.
- Partially Erupted Teeth: Teeth that cannot be adequately isolated during the sealing process.
Key Points for Sealant Application
Age Range for Sealant Application
- 3-4 Years of Age: Application is recommended for newly erupted primary molars.
- 6-7 Years of Age: First permanent molars typically erupt during this age, making them prime candidates for sealant application.
- 11-13 Years of Age: Second permanent molars and premolars should be considered for sealants as they erupt.
Amalgam Bonding Agents
Amalgam bonding agents can be classified into several categories based on their composition and mechanism of action:
A. Adhesive Systems
- Total-Etch Systems: These systems involve etching both enamel and dentin with phosphoric acid to create a rough surface that enhances mechanical retention. After etching, a bonding agent is applied to the prepared surface before the amalgam is placed.
- Self-Etch Systems: These systems combine etching and bonding in one step, using acidic monomers that partially demineralize the tooth surface while simultaneously promoting bonding. They are less technique-sensitive than total-etch systems.
B. Glass Ionomer Cements
- Glass ionomer cements can be used as a base or liner under amalgam restorations. They bond chemically to both enamel and dentin, providing a good seal and some degree of fluoride release, which can help in caries prevention.
C. Resin-Modified Glass Ionomers
- These materials combine the properties of glass ionomer cements with added resins to improve their mechanical properties and bonding capabilities. They can be used as a liner or base under amalgam restorations.
Mechanism of Action
A. Mechanical Retention
- Amalgam bonding agents create a roughened surface on the tooth structure, which increases the surface area for mechanical interlocking between the amalgam and the tooth.
B. Chemical Bonding
- Some bonding agents form chemical bonds with the tooth structure, particularly with dentin. This chemical interaction can enhance the overall retention of the amalgam restoration.
C. Sealing the Interface
- By sealing the interface between the amalgam and the tooth, bonding agents help prevent microleakage, which can lead to secondary caries and postoperative sensitivity.
Applications of Amalgam Bonding Agents
A. Sealing Tooth Preparations
- Bonding agents are used to seal the cavity preparation before the placement of amalgam, reducing the risk of microleakage and enhancing the longevity of the restoration.
B. Bonding New to Old Amalgam
- When repairing or replacing an existing amalgam restoration, bonding agents can be used to bond new amalgam to the old amalgam, improving the overall integrity of the restoration.
C. Repairing Marginal Defects
- Bonding agents can be applied to repair marginal defects in amalgam restorations, helping to restore the seal and prevent further deterioration.
Clinical Considerations
A. Technique Sensitivity
- The effectiveness of amalgam bonding agents can be influenced by the technique used during application. Proper surface preparation, including cleaning and drying the tooth structure, is essential for optimal bonding.
B. Moisture Control
- Maintaining a dry field during the application of bonding agents is critical. Moisture contamination can compromise the bond strength and lead to restoration failure.
C. Material Compatibility
- It is important to ensure compatibility between the bonding agent and the amalgam used. Some bonding agents may not be suitable for all types of amalgam, so clinicians should follow manufacturer recommendations.
D. Longevity and Performance
- While amalgam bonding agents can enhance the performance of amalgam restorations, their long-term effectiveness can vary. Regular monitoring of restorations is essential to identify any signs of failure or degradation.
Cariogram: Understanding Caries Risk
The Cariogram is a graphical representation developed by Brathall et al. in 1999 to illustrate the interaction of various factors contributing to the development of dental caries. This tool helps dental professionals and patients understand the multifactorial nature of caries and assess individual risk levels.
- Purpose: The Cariogram visually represents the interplay between different factors that influence caries development, allowing for a comprehensive assessment of an individual's caries risk.
- Structure: The Cariogram is depicted as a pie chart divided into five distinct sectors, each representing a specific contributing factor.
Sectors of the Cariogram
A. Green Sector: Chance to Avoid Caries
- Description: This sector estimates the likelihood of avoiding caries based on the individual's overall risk profile.
- Significance: A larger green area indicates a higher chance of avoiding caries, reflecting effective preventive measures and good oral hygiene practices.
B. Dark Blue Sector: Diet
- Description: This sector assesses dietary factors, including the content and frequency of sugar consumption.
- Components: It considers both the types of foods consumed (e.g., sugary snacks, acidic beverages) and how often they are eaten.
- Significance: A smaller dark blue area suggests a diet that is less conducive to caries development, while a larger area indicates a higher risk due to frequent sugar intake.
C. Red Sector: Bacteria
- Description: This sector evaluates the bacterial load in the mouth, particularly focusing on the amount of plaque and the presence of Streptococcus mutans.
- Components: It takes into account the quantity of plaque accumulation and the specific types of bacteria present.
- Significance: A larger red area indicates a higher bacterial presence, which correlates with an increased risk of caries.
D. Light Blue Sector: Susceptibility
- Description: This sector reflects the individual's susceptibility to caries, influenced by factors such as fluoride exposure, saliva secretion, and saliva buffering capacity.
- Components: It considers the effectiveness of fluoride programs, the volume of saliva produced, and the saliva's ability to neutralize acids.
- Significance: A larger light blue area suggests greater susceptibility to caries, while a smaller area indicates protective factors are in place.
E. Yellow Sector: Circumstances
- Description: This sector encompasses the individual's past caries experience and any related health conditions that may affect caries risk.
- Components: It includes the history of previous caries, dental treatments, and systemic diseases that may influence oral health.
- Significance: A larger yellow area indicates a higher risk based on past experiences and health conditions, while a smaller area suggests a more favorable history.
Clinical use of the Cariogram
A. Personalized Risk Assessment
- The Cariogram provides a visual and intuitive way to assess an individual's caries risk, allowing for tailored preventive strategies based on specific factors.
B. Patient Education
- By using the Cariogram, dental professionals can effectively communicate the multifactorial nature of caries to patients, helping them understand how their diet, oral hygiene, and other factors contribute to their risk.
C. Targeted Interventions
- The information derived from the Cariogram can guide dental professionals in developing targeted interventions, such as dietary counseling, fluoride treatments, and improved oral hygiene practices.
D. Monitoring Progress
- The Cariogram can be used over time to monitor changes in an individual's caries risk profile, allowing for adjustments in preventive strategies as needed.
Cariogram: A Visual Tool for Understanding Caries Risk
The Cariogram is a graphical representation developed by Brathall et al. in 1999 to illustrate the interaction of various factors contributing to the development of dental caries. This tool helps dental professionals and patients understand the multifactorial nature of caries and assess individual risk levels.
1. Overview of the Cariogram
- Purpose: The Cariogram visually represents the interplay between different factors that influence caries development, allowing for a comprehensive assessment of an individual's caries risk.
- Structure: The Cariogram is depicted as a pie chart divided into five distinct sectors, each representing a specific contributing factor.
2. Sectors of the Cariogram
A. Green Sector: Chance to Avoid Caries
- Description: This sector estimates the likelihood of avoiding caries based on the individual's overall risk profile.
- Significance: A larger green area indicates a higher chance of avoiding caries, reflecting effective preventive measures and good oral hygiene practices.
B. Dark Blue Sector: Diet
- Description: This sector assesses dietary factors, including the content and frequency of sugar consumption.
- Components: It considers both the types of foods consumed (e.g., sugary snacks, acidic beverages) and how often they are eaten.
- Significance: A smaller dark blue area suggests a diet that is less conducive to caries development, while a larger area indicates a higher risk due to frequent sugar intake.
C. Red Sector: Bacteria
- Description: This sector evaluates the bacterial load in the mouth, particularly focusing on the amount of plaque and the presence of Streptococcus mutans.
- Components: It takes into account the quantity of plaque accumulation and the specific types of bacteria present.
- Significance: A larger red area indicates a higher bacterial presence, which correlates with an increased risk of caries.
D. Light Blue Sector: Susceptibility
- Description: This sector reflects the individual's susceptibility to caries, influenced by factors such as fluoride exposure, saliva secretion, and saliva buffering capacity.
- Components: It considers the effectiveness of fluoride programs, the volume of saliva produced, and the saliva's ability to neutralize acids.
- Significance: A larger light blue area suggests greater susceptibility to caries, while a smaller area indicates protective factors are in place.
E. Yellow Sector: Circumstances
- Description: This sector encompasses the individual's past caries experience and any related health conditions that may affect caries risk.
- Components: It includes the history of previous caries, dental treatments, and systemic diseases that may influence oral health.
- Significance: A larger yellow area indicates a higher risk based on past experiences and health conditions, while a smaller area suggests a more favorable history.
3. Clinical Implications of the Cariogram
A. Personalized Risk Assessment
- The Cariogram provides a visual and intuitive way to assess an individual's caries risk, allowing for tailored preventive strategies based on specific factors.
B. Patient Education
- By using the Cariogram, dental professionals can effectively communicate the multifactorial nature of caries to patients, helping them understand how their diet, oral hygiene, and other factors contribute to their risk.
C. Targeted Interventions
- The information derived from the Cariogram can guide dental professionals in developing targeted interventions, such as dietary counseling, fluoride treatments, and improved oral hygiene practices.
D. Monitoring Progress
- The Cariogram can be used over time to monitor changes in an individual's caries risk profile, allowing for adjustments in preventive strategies as needed.