Talk to us?

Conservative Dentistry - NEETMDS- courses
NEET MDS Lessons
Conservative Dentistry

Fillers in composite resin are inorganic particles that enhance the mechanical and optical properties of the material. They come in various sizes, shapes, and compositions. The choice of filler influences the resin's strength, wear resistance, and polishability.

Types of fillers:
- Silica: Common in microfilled and hybrid composites, providing good aesthetics and polishability.
- Glass particles: Used in macrofill and microfill composites for high strength and durability.
- Ceramic particles: Provide excellent biocompatibility and wear resistance.
- Zirconia/silica: Combined to improve the strength and translucency of the composite.
- Nanoparticles: Enhance the resin's physical properties, including strength and wear resistance, while also offering improved aesthetics.

Filler size:
- Macrofillers: 10-50 μm, suitable for class I and II restorations where high strength is not essential but a good seal is required.
- Microfillers: 0.01-10 μm, used for fine detailing and aesthetic restorations due to their ability to blend with the tooth structure.
- Hybrid fillers: Combine macro and microfillers for restorations requiring both strength and aesthetics.

Filler loading: The amount of filler in the resin affects the material's physical properties:
- High filler loading: Increases strength, wear resistance, and decreases shrinkage but can compromise the resin's ability to adapt to the tooth structure.
- Low filler loading: Provides better flow and marginal adaptation but may result in lower strength and durability.

Filler-resin interaction:
- Chemical bonding: Improves the adhesion between the filler and the resin matrix.
- Mechanical interlocking: Larger filler particles create a stronger mechanical bond within the resin.
- Polymerization shrinkage: The filler can reduce shrinkage stress, which is crucial for minimizing marginal gaps and microleakage.

Selection criteria:
- Clinical requirements: The filler should meet the specific needs of the restoration, such as strength, wear resistance, and aesthetics.
- Tooth location: Anterior teeth may require more translucent fillers for better aesthetics, while posterior teeth need stronger, more opaque materials.
- Patient's preferences: Some patients may prefer more natural-looking restorations.
- Clinician's skill: Different fillers may require varying application techniques and curing times.

Condensers/pluggers are instruments used to deliver the forces of compaction to the underlying restorative material. There are

several methods for the application of these forces:

1. Hand pressure: use of this method alone is contraindicated except in a few situations like adapting the first piece of gold to

the convenience or point angles and where the line of force will not permit use of other methods. Powdered golds are also

known to be better condensed with hand pressure. Small condenser points of 0.5 mm in diameter are generally

recommended as they do not require very high forces for their manipulation.

2. Hand malleting: Condensation by hand malleting is a team work in which the operator directs the condenser and moves it

over the surface, while the assistant provides rhythmic blows from the mallet. Long handled condensers and leather faced

mallets (50 gms in weight) are used for this purpose. The technique allows greater control and the condensers can be

changed rapidly when required. However, with the introduction of mechanical malleting, use of this method has decreased

considerably.

3. Automatic hand malleting: This method utilizes a spring loaded instrument that delivers the desired force once the spiral

spring is released. (Disadvantage is that the blow descends very rapidly even before full pressure has been exerted on the

condenser point.

4. Electric malleting (McShirley electromallet): This instrument accommodates various shapes of con-denser points and has a

mallet in the handle itself which remains dormant until wished by the operator to function. The intensity or amplitude

generated can vary from 0.2 ounces to 15 pounds and the frequency can range from 360-3600 cycles/minute.

5. Pneumatic malleting (Hollenback condenser): This is the most recent and satisfactory method first developed by

Dr. George M. Hollenback. Pneumatic mallets consist of vibrating nit condensers and detachable tips run by

compressed air. The air is carried through a thin rubber tubing attached to the hand piece. Controlling the air

pressure by a rheostat nit allows adjusting the frequency and amplitude of condensation strokes. The construction

of the handpiece is such that the blow does not fall until pressure is placed on the condenser point. This continues

until released. Pneumatic mallets are available with both straight and angled for handpieces.

Composite Materials- Mechanical Properties and Clinical Considerations

Introduction

Composite materials are essential in modern dentistry, particularly for restorative procedures. Their mechanical properties, aesthetic qualities, and bonding capabilities make them a preferred choice for various applications. This lecture will focus on the importance of the bond between the organic resin matrix and inorganic filler, the evolution of composite materials, and key clinical considerations in their application.

1. Bonding in Composite Materials

Importance of Bonding

For a composite to exhibit good mechanical properties, a strong bond must exist between the organic resin matrix and the inorganic filler. This bond is crucial for:

  • Strength: Enhancing the overall strength of the composite.
  • Durability: Reducing solubility and water absorption, which can compromise the material over time.

Role of Silane Coupling Agents

  • Silane Coupling Agents: These agents are used to coat filler particles, facilitating a chemical bond between the filler and the resin matrix. This interaction significantly improves the mechanical properties of the composite.

2. Evolution of Composite Materials

Microfill Composites

  • Introduction: In the late 1970s, microfill composites, also known as "polishable" composites, were introduced.
  • Characteristics: These materials replaced the rough surface of conventional composites with a smooth, lustrous surface similar to tooth enamel.
  • Composition: Microfill composites contain colloidal silica particles instead of larger filler particles, allowing for better polishability and aesthetic outcomes.

Hybrid Composites

  • Structure: Hybrid composites contain a combination of larger filler particles and sub-micronsized microfiller particles.
  • Surface Texture: This combination provides a smooth "patina-like" surface texture in the finished restoration, enhancing both aesthetics and mechanical properties.

3. Clinical Considerations

Polymerization Shrinkage and Configuration Factor (C-factor)

  • C-factor: The configuration factor is the ratio of bonded surfaces to unbonded surfaces in a tooth preparation. A higher C-factor can lead to increased polymerization shrinkage, which may compromise the restoration.
  • Clinical Implications: Understanding the C-factor is essential for minimizing shrinkage effects, particularly in Class II restorations.

Incremental Placement of Composite

  • Incremental Technique: For Class II restorations, it is crucial to place and cure the composite incrementally. This approach helps reduce the effects of polymerization shrinkage, especially along the gingival floor.
  • Initial Increment: The first small increment should be placed along the gingival floor and extend slightly up the facial and lingual walls to ensure proper adaptation and minimize stress.

4. Curing Techniques

Light-Curing Systems

  • Common Systems: The most common light-curing systems include quartz/tungsten/halogen lamps. However, alternatives such as plasma arc curing (PAC) and argon laser curing systems are available.
  • Advantages of PAC and Laser Systems: These systems provide high-intensity and rapid polymerization compared to traditional halogen systems, which can be beneficial in clinical settings.

Enamel Beveling

  • Beveling Technique: The advantage of an enamel bevel in composite tooth preparation is that it exposes the ends of the enamel rods, allowing for more effective etching compared to only exposing the sides.
  • Clinical Application: Proper beveling can enhance the bond strength and overall success of the restoration.

5. Managing Microfractures and Marginal Integrity

Causes of Microfractures

Microfractures in marginal enamel can result from:

  • Traumatic contouring or finishing techniques.
  • Inadequate etching and bonding.
  • High-intensity light-curing, leading to excessive polymerization stresses.

Potential Solutions

To address microfractures, clinicians can consider:

  • Re-etching, priming, and bonding the affected area.
  • Conservatively removing the fault and re-restoring.
  • Using atraumatic finishing techniques, such as light intermittent pressure.
  • Employing slow-start polymerization techniques to reduce stress.

Mercury Release in Dental Procedures Involving Amalgam

Mercury is a key component of dental amalgam, and its release during various dental procedures has been a topic of concern due to potential health risks. Understanding the amounts of mercury released during different stages of amalgam handling is essential for dental professionals to implement safety measures and minimize exposure.

1. Mercury Release Quantification

A. Trituration

  • Amount Released: 1-2 µg
  • Description: Trituration is the process of mixing mercury with alloy particles to form a homogenous amalgam. During this process, small amounts of mercury can be released into the air, which can contribute to overall exposure.

B. Placement of Amalgam Restoration

  • Amount Released: 6-8 µg
  • Description: When placing an amalgam restoration, additional mercury may be released due to the manipulation of the material. This includes the handling and packing of the amalgam into the cavity preparation.

C. Dry Polishing

  • Amount Released: 44 µg
  • Description: Dry polishing of amalgam restorations generates the highest amount of mercury release among the listed procedures. The friction and heat generated during dry polishing can vaporize mercury, leading to increased exposure.

D. Wet Polishing

  • Amount Released: 2-4 µg
  • Description: Wet polishing, which involves the use of water to cool the restoration during polishing, results in significantly lower mercury release compared to dry polishing. The water helps to capture and reduce the amount of mercury vapor released into the air.

Hand Instruments - Design and Balancing

Hand instruments are essential tools in dentistry, and their design significantly impacts their effectiveness and usability. Proper balancing and angulation of these instruments are crucial for achieving optimal control and precision during dental procedures. Below is an overview of the key aspects of hand instrument design, focusing on the shank, angulation, and balancing.

1. Importance of Balancing

A. Definition of Balance

  • Balanced Instruments: A hand instrument is considered balanced when the concentration of force can be applied to the blade without causing rotation in the grasp of the operator. This balance is essential for effective cutting and manipulation of tissues.

B. Achieving Balance

  • Proper Angulation of Shank: The shank must be angled appropriately so that the cutting edge of the blade lies within the projected diameter of the handle. This design minimizes the tendency for the instrument to rotate during use.
  • Off-Axis Blade Edge: For optimal anti-rotational design, the blade edge should be positioned off-axis by 1 to 2 mm. This slight offset helps maintain balance while allowing effective force application.

2. Shank Design

A. Definition

  • Shank: The shank connects the handle to the blade of the instrument. It plays a critical role in the instrument's overall design and functionality.

B. Characteristics

  • Tapering: The shank typically tapers from the handle down to the blade, which can enhance control and maneuverability.
  • Surface Texture: The shank is usually smooth, round, or tapered, depending on the specific instrument design.
  • Angulation: The shank may be straight or angled, allowing for various access and visibility during procedures.

C. Classification Based on Angles

Instruments can be classified based on the number of angles in the shank:

  1. Straight: No angle in the shank.
  2. Monoangle: One angle in the shank.
  3. Binangle: Two angles in the shank.
  4. Triple-Angle: Three angles in the shank.

3. Angulation and Control

A. Purpose of Angulation

  • Access and Stability: The angulation of the instrument is designed to provide better access to the treatment area while maintaining stability during use.

B. Proximity to Long Axis

  • Control: The closer the working point (the blade) is to the long axis of the handle, the better the control over the instrument. Ideally, the working point should be within 3 mm of the center of the long axis of the handle for optimal control.

4. Balancing Examples

A. Balanced Instrument

  • Example A: When the working end of the instrument lies within 2-3 mm of the long axis of the handle, it provides effective balancing. This configuration allows the operator to apply force efficiently without losing control.

B. Unbalanced Instrument

  • Example B: If the working end is positioned away from the long axis of the handle, it results in an unbalanced instrument. This design can lead to difficulty in controlling the instrument and may compromise the effectiveness of the procedure.

Indirect Porcelain Veneers: Etched Feldspathic Veneers

Indirect porcelain veneers, particularly etched porcelain veneers, are a popular choice in cosmetic dentistry for enhancing the aesthetics of teeth. This lecture will focus on the characteristics, bonding mechanisms, and clinical considerations associated with etched feldspathic veneers.

  • Indirect Porcelain Veneers: These are thin shells of porcelain that are custom-made in a dental laboratory and then bonded to the facial surface of the teeth. They are used to improve the appearance of teeth that are discolored, misaligned, or have surface irregularities.

Types of Porcelain Veneers

  • Feldspathic Porcelain: The most frequently used type of porcelain for veneers is feldspathic porcelain. This material is known for its excellent aesthetic properties, including translucency and color matching with natural teeth.

Hydrofluoric Acid Etching

  • Etching with Hydrofluoric Acid: Feldspathic porcelain veneers are typically etched with hydrofluoric acid before bonding. This process creates a roughened surface on the porcelain, which enhances the bonding area.
  • Surface Characteristics: The etching process increases the surface area and creates micro-retentive features that improve the mechanical interlocking between the porcelain and the resin bonding agent.

Resin-Bonding Mediums

  • High Bond Strengths: The etched porcelain can achieve high bond strengths to the etched enamel through the use of resin-bonding agents. These agents are designed to penetrate the micro-retentive surface created by the etching process.
  • Bonding Process:
    1. Surface Preparation: The porcelain surface is etched with hydrofluoric acid, followed by thorough rinsing and drying.
    2. Application of Bonding Agent: A resin bonding agent is applied to the etched porcelain surface. This agent may contain components that enhance adhesion to both the porcelain and the tooth structure.
    3. Curing: The bonding agent is cured, either chemically or with a light-curing process, to achieve a strong bond between the porcelain veneer and the tooth.

Importance of Enamel Etching

  • Etched Enamel: The enamel surface of the tooth is also typically etched with phosphoric acid to enhance the bond between the resin and the tooth structure. This dual etching process (both porcelain and enamel) is crucial for achieving optimal bond strength.

Clinical Considerations

A. Indications for Use

  • Aesthetic Enhancements: Indirect porcelain veneers are indicated for patients seeking aesthetic improvements, such as correcting discoloration, closing gaps, or altering the shape of teeth.
  • Minimal Tooth Preparation: They require minimal tooth preparation compared to crowns, preserving more of the natural tooth structure.

B. Contraindications

  • Severe Tooth Wear: Patients with significant tooth wear or structural damage may require alternative restorative options.
  • Bruxism: Patients with bruxism (teeth grinding) may not be ideal candidates for porcelain veneers due to the potential for fracture.

C. Longevity and Maintenance

  • Durability: When properly bonded and maintained, porcelain veneers can last many years. Regular dental check-ups are essential to monitor the condition of the veneers and surrounding tooth structure.
  • Oral Hygiene: Good oral hygiene practices are crucial to prevent caries and periodontal disease, which can compromise the longevity of the veneers.

Caridex System

Caridex is a dental system designed for the treatment of root canals, utilizing the non-specific proteolytic effects of sodium hypochlorite (NaOCl) to aid in the cleaning and disinfection of the root canal system. Below is an overview of its components, mechanism of action, advantages, and drawbacks.

1. Components of Caridex

A. Caridex Solution I

  • Composition:
    • 0.1 M Butyric Acid
    • 0.1 M Sodium Hypochlorite (NaOCl)
    • 0.1 M Sodium Hydroxide (NaOH)

B. Caridex Solution II

  • Composition:
    • 1% Sodium Hypochlorite in a weak alkaline solution.

C. Delivery System

  • Components:
    • NaOCl Pump: Delivers the sodium hypochlorite solution.
    • Heater: Maintains the temperature of the solution for optimal efficacy.
    • Solution Reservoir: Holds the prepared solutions.
    • Handpiece: Designed to hold the applicator tip for precise application.

2. Mechanism of Action

  • Proteolytic Effect: The primary mechanism of action of Caridex is based on the non-specific proteolytic effect of sodium hypochlorite.
  • Chlorination of Collagen: The N-monochloro-dl-2-aminobutyric acid (NMAB) component enhances the chlorination of degraded collagen in dentin.
  • Conversion of Hydroxyproline: The hydroxyproline present in collagen is converted to pyrrole-2-carboxylic acid, which is part of the degradation process of dentin collagen.

3. pH and Application Time

  • Resultant pH: The pH of the Caridex solution is approximately 12, which is alkaline and conducive to the disinfection process.
  • Application Time: The recommended application time for Caridex is 20 minutes, allowing sufficient time for the solution to act on the root canal system.

4. Advantages

  • Effective Disinfection: The use of sodium hypochlorite provides a strong antimicrobial effect, helping to eliminate bacteria and debris from the root canal.
  • Collagen Degradation: The system's ability to degrade collagen can aid in the removal of organic material from the canal.

5. Drawbacks

  • Low Efficiency: The overall effectiveness of the Caridex system may be limited compared to other modern endodontic cleaning solutions.
  • Short Shelf Life: The components may have a limited shelf life, affecting their usability over time.
  • Time and Volume: The system requires a significant volume of solution and a longer application time, which may not be practical in all clinical settings.

Explore by Exams