Talk to us?

- NEETMDS- courses
NEET MDS Lessons
Conservative Dentistry

Glass ionomer cement is a tooth coloured material 
Material was based on reaction between silicate glass powder & polyacrylicacid.
They bond chemically to tooth structure & release fluoride for relatively long period

CLASSIFICATION 

Type I. For luting

Type II. For restoration 

Type II.1 Restorative esthetic 

Type II.2 Restorative reinforced

Type III. For liner & bases

Type IV. Fissure & sealent

Type V. As Orthodontic cement

Type VI. For core build up

Physical Properties

1. Low solubility
2. Coefficient of thermal expansion similar to dentin
3. Fluoride release and fluoride recharge
4. High compressive strengths
5. Bonds to tooth structure
6. Low flexural strength
7. Low shear strength
8. Dimensional change (slight expansion) (shrinks on setting, expands with water sorption)
9. Brittle
10.Lacks translucency
11.Rough surface texture

Indications for use of Type II glass ionomer cements 

1) non-stress bearing areas 

2) class III and V restorations in adults 

3) class I and II restorations in primary dentition 

4) temporary or “caries control” restorations 

5) crown margin repairs 

6) cement base under amalgam, resin, ceramics, direct and indirect gold 

7) core buildups when at least 3 walls of tooth are remaining (after crown preparation)

Contraindications 

1) high stress applications I. class IV and class II restorations II. cusp replacement III. core build-ups with less than 3 sound walls remaining

Composition

 

Factors affecting the rate or setting

1. Glass composition:Higher Alumina – Silica ratio, faster set and shorter working time.
2. Particle Size: finer the powder, faster the set.
3. Addition of Tartaric Acid:-Sharpens set without shortening the working time.
4. Relative proportions of the constituents: Greater the proportion of glass and lower the proportion of water, the faster the set.
5. Temperature

Setting Time

Type 1 - 4-5 min
type II - 7 min


PROPERTIES 

Adhesion :

- Glass ionomer cement bonds chemically to the tooth structure->reaction occur between carboxyl group of poly acid & calcium of hydroxyl apatite.
 
- Bonding with enamel is higher than that of dentin ,due to greater inorganic content. 

Esthetics :
-GIC is tooth coloured material & available in different shades.
Inferior to composites.
They lack translucency & rough surface texture.
Potential for discolouration & staining.

Biocompatibilty :

- Pulpal response to glass ionomer cement is favorable. 
- Pulpal response is mild due to 
- High buffering capacity of hydroxy apatite. 
- Large molecular weight of the polyacrylic acid ,which prevents entry into dentinal tubules. 

a) Pulp reaction – ZOE < Glass Ionomer < Zinc Phosphate 

b) Powder:liquid ratio influences acidity 

c) Solubility & Disintegration:-Initial solubility is high due to leaching of intermediate products.The complete setting reaction takes place in 24 hrs, cement should be protected from saliva during this period.

Anticariogenic properties :
- Fluoride is released from glass ionomer at the time of mixing & lies with in matrix.
Fluoride can be released out without affecting the physical properties of cement.

ADVANTAGE DISADVANTAGE

Resistance Form in Dental Restorations

Resistance form is a critical concept in operative dentistry that refers to the design features of a cavity preparation that enhance the ability of a restoration to withstand masticatory forces without failure. This lecture will cover the key elements that contribute to resistance form, the factors affecting it, and the implications for different types of restorative materials.

1. Elements of Resistance Form

A. Design Features

  1. Flat Pulpal and Gingival Floors:

    • Flat surfaces provide stability and help distribute occlusal forces evenly across the restoration, reducing the risk of displacement.
  2. Box-Shaped Cavity:

    • A box-shaped preparation enhances resistance by providing a larger surface area for bonding and mechanical retention.
  3. Inclusion of Weakened Tooth Structure:

    • Including weakened areas in the preparation helps to prevent fracture under masticatory forces by redistributing stress.
  4. Rounded Internal Line Angles:

    • Rounding internal line angles reduces stress concentration points, which can lead to failure of the restoration.
  5. Adequate Thickness of Restorative Material:

    • Sufficient thickness is necessary to ensure that the restoration can withstand occlusal forces without fracturing. The required thickness varies depending on the type of restorative material used.
  6. Cusp Reduction for Capping:

    • When indicated, reducing cusps helps to provide adequate support for the restoration and prevents fracture.

B. Deepening of Pulpal Floor

  • Increased Bulk: Deepening the pulpal floor increases the bulk of the restoration, enhancing its resistance to occlusal forces.

2. Features of Resistance Form

A. Box-Shaped Preparation

  • A box-shaped cavity preparation is essential for providing resistance against displacement and fracture.

B. Flat Pulpal and Gingival Floors

  • These features help the tooth resist occlusal masticatory forces without displacement.

C. Adequate Thickness of Restorative Material

  • The thickness of the restorative material should be sufficient to prevent fracture of both the remaining tooth structure and the restoration. For example:
    • High Copper Amalgam: Minimum thickness of 1.5 mm.
    • Cast Metal: Minimum thickness of 1.0 mm.
    • Porcelain: Minimum thickness of 2.0 mm.
    • Composite and Glass Ionomer: Typically require thicknesses greater than 2.5 mm due to their wear potential.

D. Restriction of External Wall Extensions

  • Limiting the extensions of external walls helps maintain strong marginal ridge areas with adequate dentin support.

E. Rounding of Internal Line Angles

  • This feature reduces stress concentration points, enhancing the overall resistance form.

F. Consideration for Cusp Capping

  • Depending on the amount of remaining tooth structure, cusp capping may be necessary to provide adequate support for the restoration.

3. Factors Affecting Resistance Form

A. Amount of Occlusal Stresses

  • The greater the occlusal forces, the more robust the resistance form must be to prevent failure.

B. Type of Restoration Used

  • Different materials have varying requirements for thickness and design to ensure adequate resistance.

C. Amount of Remaining Tooth Structure

  • The more remaining tooth structure, the better the support for the restoration, which can enhance resistance form.

4. Clinical Implications

A. Cavity Preparation

  • Proper cavity preparation is essential for achieving optimal resistance form. Dentists should consider the design features and material requirements when preparing cavities.

B. Material Selection

  • Understanding the properties of different restorative materials is crucial for ensuring that the restoration can withstand the forces it will encounter in the oral environment.

C. Monitoring and Maintenance

  • Regular monitoring of restorations is important to identify any signs of failure or degradation, allowing for timely intervention.

Fillers in composite resin are inorganic particles that enhance the mechanical and optical properties of the material. They come in various sizes, shapes, and compositions. The choice of filler influences the resin's strength, wear resistance, and polishability.

Types of fillers:
- Silica: Common in microfilled and hybrid composites, providing good aesthetics and polishability.
- Glass particles: Used in macrofill and microfill composites for high strength and durability.
- Ceramic particles: Provide excellent biocompatibility and wear resistance.
- Zirconia/silica: Combined to improve the strength and translucency of the composite.
- Nanoparticles: Enhance the resin's physical properties, including strength and wear resistance, while also offering improved aesthetics.

Filler size:
- Macrofillers: 10-50 μm, suitable for class I and II restorations where high strength is not essential but a good seal is required.
- Microfillers: 0.01-10 μm, used for fine detailing and aesthetic restorations due to their ability to blend with the tooth structure.
- Hybrid fillers: Combine macro and microfillers for restorations requiring both strength and aesthetics.

Filler loading: The amount of filler in the resin affects the material's physical properties:
- High filler loading: Increases strength, wear resistance, and decreases shrinkage but can compromise the resin's ability to adapt to the tooth structure.
- Low filler loading: Provides better flow and marginal adaptation but may result in lower strength and durability.

Filler-resin interaction:
- Chemical bonding: Improves the adhesion between the filler and the resin matrix.
- Mechanical interlocking: Larger filler particles create a stronger mechanical bond within the resin.
- Polymerization shrinkage: The filler can reduce shrinkage stress, which is crucial for minimizing marginal gaps and microleakage.

Selection criteria:
- Clinical requirements: The filler should meet the specific needs of the restoration, such as strength, wear resistance, and aesthetics.
- Tooth location: Anterior teeth may require more translucent fillers for better aesthetics, while posterior teeth need stronger, more opaque materials.
- Patient's preferences: Some patients may prefer more natural-looking restorations.
- Clinician's skill: Different fillers may require varying application techniques and curing times.

Primary Retention Form in Dental Restorations

Primary retention form refers to the geometric shape or design of a prepared cavity that helps resist the displacement or removal of a restoration due to tipping or lifting forces. Understanding the primary retention form is crucial for ensuring the longevity and stability of various types of dental restorations. Below is an overview of primary retention forms for different types of restorations.

1. Amalgam Restorations

A. Class I & II Restorations

  • Primary Retention Form:
    • Occlusally Converging External Walls: The walls of the cavity preparation converge towards the occlusal surface, which helps resist displacement.
    • Occlusal Dovetail: In Class II restorations, an occlusal dovetail is often included to enhance retention by providing additional resistance to displacement.

B. Class III & V Restorations

  • Primary Retention Form:
    • Diverging External Walls: The external walls diverge outward, which can reduce retention.
    • Retention Grooves or Coves: These features are added to enhance retention by providing mechanical interlocking and resistance to displacement.

2. Composite Restorations

A. Primary Retention Form

  • Mechanical Bond:
    • Acid Etching: The enamel and dentin surfaces are etched to create a roughened surface that enhances mechanical retention.
    • Dentin Bonding Agents: These agents infiltrate the demineralized dentin and create a hybrid layer, providing a strong bond between the composite material and the tooth structure.

3. Cast Metal Inlays

A. Primary Retention Form

  • Parallel Longitudinal Walls: The cavity preparation features parallel walls that help resist displacement.
  • Small Angle of Divergence: A divergence of 2-5 degrees may be used to facilitate the seating of the inlay while still providing adequate retention.

4. Additional Considerations

A. Occlusal Dovetail and Secondary Retention Grooves

  • Function: These features aid in preventing the proximal displacement of restorations by occlusal forces, enhancing the overall retention of the restoration.

B. Converging Axial Walls

  • Function: Converging axial walls help prevent occlusal displacement of the restoration, ensuring that the restoration remains securely in place during function.

Carisolv

Carisolv is a dental caries removal system that offers a unique approach to the treatment of carious dentin. It differs from traditional methods, such as Caridex, by utilizing amino acids and a lower concentration of sodium hypochlorite. Below is an overview of its components, mechanism of action, application process, and advantages.

1. Components of Carisolv

A. Red Gel (Solution A)

  • Composition:
    • Amino Acids: Contains 0.1 M of three amino acids:
      • I-Glutamic Acid
      • I-Leucine
      • I-Lysine
    • Sodium Hydroxide (NaOH): Used to adjust pH.
    • Sodium Hypochlorite (NaOCl): Present at a lower concentration compared to Caridex.
    • Erythrosine: A dye that provides color to the gel, aiding in visualization during application.
    • Purified Water: Used as a solvent.

B. Clear Liquid (Solution B)

  • Composition:
    • Sodium Hypochlorite (NaOCl): Contains 0.5% NaOCl w/v, which contributes to the antimicrobial properties of the solution.

C. Storage and Preparation

  • Temperature: The two separate gels are stored at 48°C before use and are allowed to return to room temperature prior to application.

2. Mechanism of Action

  • Softening Carious Dentin: Carisolv is designed to soften carious dentin by chemically disrupting denatured collagen within the affected tissue.
  • Collagen Disruption: The amino acids in the formulation play a crucial role in breaking down the collagen matrix, making it easier to remove the softened carious dentin.
  • Scraping Away: After the dentin is softened, it is removed using specially designed hand instruments, allowing for precise and effective caries removal.

3. pH and Application Time

  • Resultant pH: The pH of Carisolv is approximately 11, which is alkaline and conducive to the softening process.
  • Application Time: The recommended application time for Carisolv is between 30 to 60 seconds, allowing for quick treatment of carious lesions.

4. Advantages

  • Minimally Invasive: Carisolv offers a minimally invasive approach to caries removal, preserving healthy tooth structure while effectively treating carious dentin.
  • Reduced Need for Rotary Instruments: The chemical action of Carisolv reduces the reliance on traditional rotary instruments, which can be beneficial for patients with anxiety or those requiring a gentler approach.
  • Visualization: The presence of erythrosine allows for better visualization of the treated area, helping clinicians ensure complete removal of carious tissue.

Amalgam Bonding Agents

Amalgam bonding agents can be classified into several categories based on their composition and mechanism of action:

A. Adhesive Systems

  • Total-Etch Systems: These systems involve etching both enamel and dentin with phosphoric acid to create a rough surface that enhances mechanical retention. After etching, a bonding agent is applied to the prepared surface before the amalgam is placed.
  • Self-Etch Systems: These systems combine etching and bonding in one step, using acidic monomers that partially demineralize the tooth surface while simultaneously promoting bonding. They are less technique-sensitive than total-etch systems.

B. Glass Ionomer Cements

  • Glass ionomer cements can be used as a base or liner under amalgam restorations. They bond chemically to both enamel and dentin, providing a good seal and some degree of fluoride release, which can help in caries prevention.

C. Resin-Modified Glass Ionomers

  • These materials combine the properties of glass ionomer cements with added resins to improve their mechanical properties and bonding capabilities. They can be used as a liner or base under amalgam restorations.

Mechanism of Action

A. Mechanical Retention

  • Amalgam bonding agents create a roughened surface on the tooth structure, which increases the surface area for mechanical interlocking between the amalgam and the tooth.

B. Chemical Bonding

  • Some bonding agents form chemical bonds with the tooth structure, particularly with dentin. This chemical interaction can enhance the overall retention of the amalgam restoration.

C. Sealing the Interface

  • By sealing the interface between the amalgam and the tooth, bonding agents help prevent microleakage, which can lead to secondary caries and postoperative sensitivity.

Applications of Amalgam Bonding Agents

A. Sealing Tooth Preparations

  • Bonding agents are used to seal the cavity preparation before the placement of amalgam, reducing the risk of microleakage and enhancing the longevity of the restoration.

B. Bonding New to Old Amalgam

  • When repairing or replacing an existing amalgam restoration, bonding agents can be used to bond new amalgam to the old amalgam, improving the overall integrity of the restoration.

C. Repairing Marginal Defects

  • Bonding agents can be applied to repair marginal defects in amalgam restorations, helping to restore the seal and prevent further deterioration.

Clinical Considerations

A. Technique Sensitivity

  • The effectiveness of amalgam bonding agents can be influenced by the technique used during application. Proper surface preparation, including cleaning and drying the tooth structure, is essential for optimal bonding.

B. Moisture Control

  • Maintaining a dry field during the application of bonding agents is critical. Moisture contamination can compromise the bond strength and lead to restoration failure.

C. Material Compatibility

  • It is important to ensure compatibility between the bonding agent and the amalgam used. Some bonding agents may not be suitable for all types of amalgam, so clinicians should follow manufacturer recommendations.

D. Longevity and Performance

  • While amalgam bonding agents can enhance the performance of amalgam restorations, their long-term effectiveness can vary. Regular monitoring of restorations is essential to identify any signs of failure or degradation.

Spray Particles in the Dental Operatory

1. Aerosols

Aerosols are composed of invisible particles that range in size from approximately 5 micrometers (µm) to 50 micrometers (µm).

Characteristics

  • Suspension: Aerosols can remain suspended in the air for extended periods, often for hours, depending on environmental conditions.
  • Transmission of Infection: Because aerosols can carry infectious agents, they pose a risk for the transmission of respiratory infections, including those caused by bacteria and viruses.

Clinical Implications

  • Infection Control: Dental professionals must implement appropriate infection control measures, such as the use of personal protective equipment (PPE) and effective ventilation systems, to minimize exposure to aerosols.

2. Mists


Mists are visible droplets that are larger than aerosols, typically estimated to be around 50 micrometers (µm) in diameter.

Characteristics

  • Visibility: Mists can be seen in a beam of light, making them distinguishable from aerosols.
  • Settling Time: Heavy mists tend to settle gradually from the air within 5 to 15 minutes after being generated.

Clinical Implications

  • Infection Risk: Mists produced by patients with respiratory infections, such as tuberculosis, can transmit pathogens. Dental personnel should be cautious and use appropriate protective measures when treating patients with known respiratory conditions.

3. Spatter


Spatter consists of larger particles, generally greater than 50 micrometers (µm), and includes visible splashes.

Characteristics

  • Trajectory: Spatter has a distinct trajectory and typically falls within 3 feet of the patient’s mouth.
  • Potential for Coating: Spatter can coat the face and outer garments of dental personnel, increasing the risk of exposure to infectious agents.

Clinical Implications

  • Infection Pathways: Spatter or splashing onto mucosal surfaces is considered a potential route of infection for dental personnel, particularly concerning blood-borne pathogens.
  • Protective Measures: The use of face shields, masks, and protective clothing is essential to minimize the risk of exposure to spatter during dental procedures.

4. Droplets


Droplets are larger than aerosols and mists, typically ranging from 5 to 100 micrometers in diameter. They are formed during procedures that involve the use of water or saliva, such as ultrasonic scaling or high-speed handpieces.

Characteristics

  • Size and Behavior: Droplets can be visible and may settle quickly due to their larger size. They can travel short distances but are less likely to remain suspended in the air compared to aerosols.
  • Transmission of Pathogens: Droplets can carry pathogens, particularly during procedures that generate saliva or blood.

Clinical Implications

  • Infection Control: Droplets can pose a risk for respiratory infections, especially in procedures involving patients with known infections. Proper PPE, including masks and face shields, is essential to minimize exposure.

5. Dust Particles

Dust particles are tiny solid particles that can be generated from various sources, including the wear of dental materials, the use of rotary instruments, and the handling of dental products.

Characteristics

  • Size: Dust particles can vary in size but are generally smaller than 10 micrometers in diameter.
  • Sources: They can originate from dental materials, such as composite resins, ceramics, and metals, as well as from the environment.

Clinical Implications

  • Respiratory Risks: Inhalation of dust particles can pose respiratory risks to dental personnel. Effective ventilation and the use of masks can help reduce exposure.
  • Allergic Reactions: Some individuals may have allergic reactions to specific dust particles, particularly those derived from dental materials.

6. Bioaerosols

Bioaerosols are airborne particles that contain living organisms or biological materials, including bacteria, viruses, fungi, and allergens.

Characteristics

  • Composition: Bioaerosols can include a mixture of aerosols, droplets, and dust particles that carry viable microorganisms.
  • Sources: They can be generated during dental procedures, particularly those that involve the manipulation of saliva, blood, or infected tissues.

Clinical Implications

  • Infection Control: Bioaerosols pose a significant risk for the transmission of infectious diseases. Implementing strict infection control protocols, including the use of high-efficiency particulate air (HEPA) filters and proper PPE, is crucial.
  • Monitoring Air Quality: Regular monitoring of air quality in the dental operatory can help assess the presence of bioaerosols and inform infection control practices.

7. Particulate Matter (PM)

Particulate matter (PM) refers to a mixture of solid particles and liquid droplets suspended in the air. In the dental context, it can include a variety of particles generated during procedures.

Characteristics

  • Size Categories: PM is often categorized by size, including PM10 (particles with a diameter of 10 micrometers or less) and PM2.5 (particles with a diameter of 2.5 micrometers or less).
  • Sources: In a dental setting, PM can originate from dental materials, equipment wear, and environmental sources.

Clinical Implications

  • Health Risks: Exposure to particulate matter can have adverse health effects, particularly for individuals with respiratory conditions. Proper ventilation and air filtration systems can help mitigate these risks.
  • Regulatory Standards: Dental practices may need to adhere to local regulations regarding air quality and particulate matter levels.

Explore by Exams