NEET MDS Lessons
Conservative Dentistry
Types of fillers:
- Silica: Common in microfilled and hybrid composites, providing good aesthetics and polishability.
- Glass particles: Used in macrofill and microfill composites for high strength and durability.
- Ceramic particles: Provide excellent biocompatibility and wear resistance.
- Zirconia/silica: Combined to improve the strength and translucency of the composite.
- Nanoparticles: Enhance the resin's physical properties, including strength and wear resistance, while also offering improved aesthetics.
Filler size:
- Macrofillers: 10-50 μm, suitable for class I and II restorations where high strength is not essential but a good seal is required.
- Microfillers: 0.01-10 μm, used for fine detailing and aesthetic restorations due to their ability to blend with the tooth structure.
- Hybrid fillers: Combine macro and microfillers for restorations requiring both strength and aesthetics.
Filler loading: The amount of filler in the resin affects the material's physical properties:
- High filler loading: Increases strength, wear resistance, and decreases shrinkage but can compromise the resin's ability to adapt to the tooth structure.
- Low filler loading: Provides better flow and marginal adaptation but may result in lower strength and durability.
Filler-resin interaction:
- Chemical bonding: Improves the adhesion between the filler and the resin matrix.
- Mechanical interlocking: Larger filler particles create a stronger mechanical bond within the resin.
- Polymerization shrinkage: The filler can reduce shrinkage stress, which is crucial for minimizing marginal gaps and microleakage.
Selection criteria:
- Clinical requirements: The filler should meet the specific needs of the restoration, such as strength, wear resistance, and aesthetics.
- Tooth location: Anterior teeth may require more translucent fillers for better aesthetics, while posterior teeth need stronger, more opaque materials.
- Patient's preferences: Some patients may prefer more natural-looking restorations.
- Clinician's skill: Different fillers may require varying application techniques and curing times.
Various dyes have been tried to detect carious enamel, each having some Advantages and Disadvantages:
‘Procion’ dyes stain enamel lesions but the staining becomes irreversible because the dye reacts with nitrogen and hydroxyl groups of enamel and acts as a fixative.
‘Calcein’ dye makes a complex with calcium and remains bound to the lesion.
‘Fluorescent dye’ like Zyglo ZL-22 has been used in vitro which is not suitable in vivo. The dye is made visible by ultraviolet illumination.
‘Brilliant blue’ has also been used to enhance the diagnostic quality of fiberoptic transillumination.
Pin size
In general, increase in diameter of pin offers more retention but large
sized pins can result in more stresses in dentin. Pins are available in four
color coded sizes:
Name |
Pin diameter |
Color code |
·
Minuta |
0.38 mm |
Pink |
·
Minikin |
0.48mm |
Red |
·
Minim |
0.61 mm |
Silver |
·
Regular |
0.78 mm |
Gold
|
Selection of pin size depends upon the following factors:
·
Amount of dentin present
·
Amount of retention required
For most posterior restorations, Minikin size of pins is used because
they provide maximum retention without causing crazing in dentin.
A. Retention vs. Stress
- Retention: Generally, an increase in the diameter of the pin offers more retention for the restoration.
- Stress: However, larger pins can result in increased stresses in the dentin, which may lead to complications such as crazing or cracking of the tooth structure.
2. Factors Influencing Pin Size Selection
The selection of pin size depends on several factors:
A. Amount of Dentin Present
- Assessment: The amount of remaining dentin is a critical factor in determining the appropriate pin size. More dentin allows for the use of larger pins, while less dentin may necessitate smaller pins to avoid excessive stress.
B. Amount of Retention Required
- Retention Needs: The specific retention requirements of the restoration will also influence pin size selection. In cases where maximum retention is needed, larger pins may be considered, provided that sufficient dentin is available to accommodate them without causing damage.
3. Recommended Pin Size for Posterior Restorations
For most posterior restorations, the Minikin size pin (0.48 mm, color-coded red) is commonly used. This size provides a balance between adequate retention and minimizing the risk of causing crazing in the dentin.
Pouring the Final Impression
Technique
- Mixing Die Stone: A high-strength die stone is mixed using a vacuum mechanical mixer to ensure a homogenous mixture without air bubbles.
- Pouring Process:
- The die stone is poured into the impression using a vibrator and a No. 7 spatula.
- The first increments should be applied in small amounts, allowing the material to flow into the remote corners and angles of the preparation without trapping air.
- Surface Tension-Reducing Agents: These agents can be added to the die stone to enhance its flow properties, allowing it to penetrate deep into the internal corners of the impression.
Final Dimensions
- The impression should be filled sufficiently so that the dies will be approximately 15 to 20 mm tall occluso-gingivally after trimming. This height is important for the stability and accuracy of the final restoration.
Beveling in Restorative Dentistry
Beveling: Beveling refers to the process of angling the edges of a cavity preparation to create a smooth transition between the tooth structure and the restorative material. This technique can enhance the aesthetics and retention of certain materials.
Characteristics of Ceramic Materials
- Brittleness: Ceramic materials, such as porcelain, are inherently brittle and can be prone to fracture under stress.
- Bonding Mechanism: Ceramics rely on adhesive bonding to tooth structure, which can be compromised by beveling.
Contraindications
- Cavosurface Margins: Beveling the cavosurface margins
of ceramic restorations is contraindicated because:
- It can weaken the bond between the ceramic and the tooth structure.
- It may create unsupported enamel, increasing the risk of chipping or fracture of the ceramic material.
Beveling with Amalgam Restorations
Amalgam Characteristics
- Strength and Durability: Amalgam is a strong and durable material that can withstand significant occlusal forces.
- Retention Mechanism: Amalgam relies on mechanical retention rather than adhesive bonding.
Beveling Guidelines
- General Contraindications: Beveling is generally contraindicated when using amalgam, as it can reduce the mechanical retention of the restoration.
- Exception for Class II Preparations:
- Gingival Floor Beveling: In Class II preparations
where enamel is still present, a slight bevel (approximately 15 to 20
degrees) may be placed on the gingival floor. This is done to:
- Remove unsupported enamel rods, which can lead to enamel fracture.
- Enhance the seal between the amalgam and the tooth structure, improving the longevity of the restoration.
- Gingival Floor Beveling: In Class II preparations
where enamel is still present, a slight bevel (approximately 15 to 20
degrees) may be placed on the gingival floor. This is done to:
Technique for Beveling
- Preparation: When beveling the gingival floor:
- Use a fine diamond bur or a round bur to create a smooth, angled surface.
- Ensure that the bevel is limited to the enamel portion of the wall to maintain the integrity of the underlying dentin.
Clinical Implications
A. Material Selection
- Understanding the properties of the restorative material is essential for determining the appropriate preparation technique.
- Clinicians should be aware of the contraindications for beveling based on the material being used to avoid compromising the restoration's success.
B. Restoration Longevity
- Proper preparation techniques, including appropriate beveling when indicated, can significantly impact the longevity and performance of restorations.
- Regular monitoring of restorations is essential to identify any signs of failure or degradation, particularly in areas where beveling has been performed.
Proper Pin Placement in Amalgam Restorations
Principles of Pin Placement
- Strength Maintenance: Proper pin placement does not reduce the strength of amalgam restorations. The goal is to maintain the strength of the restoration regardless of the clinical problem, tooth size, or available space for pins.
- Single Unit Restoration: In modern amalgam preparations, it is essential to secure the restoration and the tooth as a single unit. This is particularly important when significant tooth structure has been lost.
Considerations for Cusp Replacement
- Cusp Replacement: If the mesiofacial wall is replaced, the mesiofacial cusp must also be replaced to ensure proper occlusal function and distribution of forces.
- Force Distribution: It is crucial to recognize that forces of occlusal loading must be distributed over a large area. If the distofacial cusp were replaced with a pin, there would be a tendency for the restoration to rotate around the mesial pins, potentially leading to displacement or failure of the restoration.
Inlay Preparation
Inlay preparations are a common restorative procedure in dentistry, particularly for Class II restorations.
1. Definitions
A. Inlay
- An inlay is a restoration that is fabricated using an indirect procedure. It involves one or more tooth surfaces and may cap one or more cusps but does not cover all cusps.
2. Class II Inlay (Cast Metal) Preparation Procedure
A. Burs Used
- Recommended Burs:
- No. 271: For initial cavity preparation.
- No. 169 L: For refining the cavity shape and creating the proximal box.
B. Initial Cavity Preparation
- Similar to Class II Amalgam: The initial cavity
preparation is performed similarly to that for Class II amalgam
restorations, with the following differences:
- Occlusal Entry Cut Depth: The initial occlusal entry should be approximately 1.5 mm deep.
- Cavity Margins Divergence: All cavity margins must
diverge occlusally by 2-5 degrees:
- 2 degrees: When the vertical walls of the cavity are short.
- 5 degrees: When the vertical walls are long.
- Proximal Box Margins: The proximal box margins should clear the adjacent tooth by 0.2-0.5 mm, with 0.5 ± 0.2 mm being ideal.
C. Preparation of Bevels and Flares
- Primary and Secondary Flares:
- Flares are created on the facial and lingual proximal walls, forming the walls in two planes.
- The secondary flare widens the proximal box, which initially had a
clearance of 0.5 mm from the adjacent tooth. This results in:
- Marginal Metal in Embrasure Area: Placing the marginal metal in the embrasure area allows for better self-cleansing and easier access for cleaning and polishing without excessive dentin removal.
- Marginal Metal Angle: A 40-degree angle, which is easily burnishable and strong.
- Enamel Margin Angle: A 140-degree angle, which blunts the enamel margin and increases its strength.
- Note: Secondary flares are omitted on the mesiofacial proximal walls of maxillary premolars and first molars for esthetic reasons.
D. Gingival Bevels
- Width: Gingival bevels should be 0.5-1 mm wide and blend with the secondary flare, resulting in a marginal metal angle of 30 degrees.
- Purpose:
- Removal of weak enamel.
- Creation of a burnishable 30-degree marginal metal.
- Production of a lap sliding fit at the gingival margin.
E. Occlusal Bevels
- Location: Present on the cavosurface margins of the cavity on the occlusal surface.
- Width: Approximately 1/4th the depth of the respective wall, resulting in a marginal metal angle of 40 degrees.
3. Capping Cusps
A. Indications
- Cusp Involvement: Capping cusps is indicated when more than 1/2 of a cusp is involved and is mandatory when 2/3 or more is involved.
B. Advantages
- Weak Enamel Removal: Helps in removing weak enamel.
- Cavity Margin Location: Moves the cavity margin away from occlusal areas subjected to heavy forces.
- Visualization of Caries: Aids in visualizing the extent of caries, increasing convenience during preparation.
C. Cusp Reduction
- Uniform Metal Thickness: Cusp reduction must provide for a uniform 1.5 mm metal thickness over the reduced cusps.
- Facial Cusp Reduction: For maxillary premolars and first molars, the reduction of the facial cusp should be 0.75-1 mm for esthetic reasons.
D. Reverse Bevel (Counter Bevel)
- Definition: A bevel given on the margins of the reduced cusp.
- Width: Varies to extend beyond any occlusal contact with opposing teeth, resulting in a marginal metal angle of 30 degrees.
E. Retention Considerations
- Retention Form: Cusp reduction decreases the retention form due to reduced vertical wall height. Therefore, proximal retentive grooves are usually recommended.
- Collar and Skirt Features: These features can enhance retention and resistance form.