Talk to us?

Conservative Dentistry - NEETMDS- courses
NEET MDS Lessons
Conservative Dentistry

Implications for Dental Practice

A. Health and Safety Considerations

  • Mercury Exposure: Understanding the amounts of mercury released during these procedures is crucial for assessing potential health risks to dental professionals and patients.
  • Regulatory Guidelines: Dental practices should adhere to guidelines and regulations regarding mercury handling and exposure limits to ensure a safe working environment.

B. Best Practices

  • Use of Wet Polishing: Whenever possible, wet polishing should be preferred over dry polishing to minimize mercury release.
  • Proper Ventilation: Ensuring adequate ventilation in the dental operatory can help reduce the concentration of mercury vapor in the air.
  • Personal Protective Equipment (PPE): Dental professionals should use appropriate PPE, such as masks and gloves, to minimize exposure during amalgam handling.

C. Patient Safety

  • Informed Consent: Patients should be informed about the materials used in their restorations, including the presence of mercury in amalgam, and the associated risks.
  • Monitoring: Regular monitoring of dental practices for mercury exposure levels can help maintain a safe environment for both staff and patients.

 

 

1. Noise Levels of Turbine Handpieces

Turbine Handpieces

  • Ball Bearings: Turbine handpieces equipped with ball bearings can operate efficiently at air pressures of around 30 pounds.
  • Noise Levels: At high frequencies, these handpieces may produce noise levels ranging from 70 to 94 dB.
  • Hearing Damage Risk: Exposure to noise levels exceeding 75 dB, particularly in the frequency range of 1000 to 8000 cycles per second (cps), can pose a risk of hearing damage for dental professionals.

Implications for Practice

  • Hearing Protection: Dental professionals should consider using hearing protection, especially during prolonged use of high-speed handpieces, to mitigate the risk of noise-induced hearing loss.
  • Workplace Safety: Implementing noise-reduction strategies in the dental operatory can enhance the comfort and safety of both staff and patients.

2. Post-Carve Burnishing

Technique

  • Post-Carve Burnishing: This technique involves lightly rubbing the carved surface of an amalgam restoration with a burnisher of suitable size and shape.
  • Purpose: The goal is to improve the smoothness of the restoration and produce a satin finish rather than a shiny appearance.

Benefits

  • Enhanced Aesthetics: A satin finish can improve the aesthetic integration of the restoration with the surrounding tooth structure.
  • Surface Integrity: Burnishing can help to compact the surface of the amalgam, potentially enhancing its resistance to wear and marginal integrity.

3. Preparing Mandibular First Premolars for MOD Amalgam Restorations

Considerations for Tooth Preparation

  • Conservation of Tooth Structure: When preparing a mesio-occluso-distal (MOD) amalgam restoration for a mandibular first premolar, it is important to conserve the support of the small lingual cusp.
    • Occlusal Step Preparation: The occlusal step should be prepared more facially than lingually, which helps to maintain the integrity of the lingual cusp.
  • Bur Positioning: The bur should be tilted slightly lingually to establish the correct direction for the pulpal wall.

Cusp Reduction

  • Lingual Cusp Consideration: If the lingual margin of the occlusal step extends more than two-thirds the distance from the central fissure to the cuspal eminence, the lingual cusp may need to be reduced to ensure proper occlusal function and stability of the restoration.

4. Universal Matrix System

Overview

  • Tofflemire Matrix System: Designed by B.R. Tofflemire, the Universal matrix system is a commonly used tool in restorative dentistry.
  • Indications: This system is ideally indicated when three surfaces (mesial, occlusal, distal) of a posterior tooth have been prepared for restoration.

Benefits

  • Retention and Contour: The matrix system helps in achieving proper contour and retention of the restorative material, ensuring a well-adapted restoration.
  • Ease of Use: The design allows for easy placement and adjustment, facilitating efficient restorative procedures.

5. Angle Former Excavator

Functionality

  • Angle Former: A special type of excavator used primarily for sharpening line angles and creating retentive features in dentin, particularly in preparations for gold restorations.
  • Beveling Enamel Margins: The angle former can also be used to place a bevel on enamel margins, enhancing the retention of restorative materials.

Clinical Applications

  • Preparation for Gold Restorations: The angle former is particularly useful in preparations where precise line angles and retention are critical for the success of gold restorations.
  • Versatility: Its ability to create retentive features makes it a valuable tool in various restorative procedures.

Amorphous Calcium Phosphate (ACP)

Amorphous Calcium Phosphate (ACP) is a significant compound in dental materials and oral health, known for its role in the biological formation of hydroxyapatite, the primary mineral component of tooth enamel and bone. ACP has both preventive and restorative applications in dentistry, making it a valuable material for enhancing oral health.

1. Biological Role

A. Precursor to Hydroxyapatite

  • Formation: ACP serves as an antecedent in the biological formation of hydroxyapatite (HAP), which is essential for the mineralization of teeth and bones.
  • Conversion: At neutral to high pH levels, ACP remains in its original amorphous form. However, when exposed to low pH conditions (pH < 5-8), ACP converts into hydroxyapatite, helping to replace the HAP lost due to acidic demineralization.

2. Properties of ACP

A. pH-Dependent Behavior

  • Neutral/High pH: At neutral or high pH levels, ACP remains stable and does not dissolve.
  • Low pH: When the pH drops below 5-8, ACP begins to dissolve, releasing calcium (Ca�⁺) and phosphate (PO₄�⁻) ions. This process is crucial in areas where enamel demineralization has occurred due to acid exposure.

B. Smart Material Characteristics

ACP is often referred to as a "smart material" due to its unique properties:

  • Targeted Release: ACP releases calcium and phosphate ions specifically at low pH levels, which is when the tooth is at risk of demineralization.
  • Acid Neutralization: The released calcium and phosphate ions help neutralize acids in the oral environment, effectively buffering the pH and reducing the risk of further enamel erosion.
  • Reinforcement of Natural Defense: ACP reinforces the tooth�s natural defense system by providing essential minerals only when they are needed, thus promoting remineralization.
  • Longevity: ACP has a long lifespan in the oral cavity and does not wash out easily, making it effective for sustained protection.

3. Applications in Dentistry

A. Preventive Applications

  • Remineralization: ACP is used in various dental products, such as toothpaste and mouth rinses, to promote the remineralization of early carious lesions and enhance enamel strength.
  • Fluoride Combination: ACP can be combined with fluoride to enhance its effectiveness in preventing caries and promoting remineralization.

B. Restorative Applications

  • Dental Materials: ACP is incorporated into restorative materials, such as composites and sealants, to improve their mechanical properties and provide additional protection against caries.
  • Cavity Liners and Bases: ACP can be used in cavity liners and bases to promote healing and remineralization of the underlying dentin.

Surface Preparation for Mechanical Bonding

Methods for Producing Surface Roughness

  • Grinding and Etching: The common methods for creating surface roughness to enhance mechanical bonding include grinding or etching the surface.
    • Grinding: This method produces gross mechanical roughness but leaves a smear layer of hydroxyapatite crystals and denatured collagen approximately 1 to 3 �m thick.
    • Etching: Etching can remove the smear layer and create a more favorable surface for bonding.

Importance of Surface Preparation

  • Proper surface preparation is critical for achieving effective mechanical bonding between dental materials, ensuring the longevity and success of restorations.

CPP-ACP, or casein phosphopeptide-amorphous calcium phosphate, is a significant compound in dentistry, particularly in the prevention and management of dental caries (tooth decay).

Role and applications in dentistry:

Composition and Mechanism

  • Composition: CPP-ACP is derived from casein, a milk protein. It contains clusters of calcium and phosphate ions that are stabilized by casein phosphopeptides.
  • Mechanism: The unique structure of CPP-ACP allows it to stabilize calcium and phosphate in a soluble form, which can be delivered to the tooth surface. When applied to the teeth, CPP-ACP can release these ions, promoting the remineralization of enamel and dentin, especially in early carious lesions.

Benefits in Dentistry

  1. Remineralization: CPP-ACP helps in the remineralization of demineralized enamel, making it an effective treatment for early carious lesions.
  2. Caries Prevention: Regular use of CPP-ACP can help prevent the development of caries by maintaining a higher concentration of calcium and phosphate in the oral environment.
  3. Reduction of Sensitivity: It can help reduce tooth sensitivity by occluding dentinal tubules and providing a protective layer over exposed dentin.
  4. pH Buffering: CPP-ACP can help buffer the pH in the oral cavity, reducing the risk of acid-induced demineralization.
  5. Compatibility with Fluoride: CPP-ACP can be used in conjunction with fluoride, enhancing the overall effectiveness of caries prevention strategies.

Applications

  • Toothpaste: Some toothpaste formulations include CPP-ACP to enhance remineralization and provide additional protection against caries.
  • Chewing Gum: Sucrose-free chewing gums containing CPP-ACP can be used to promote oral health, especially after meals.
  • Dental Products: CPP-ACP is also found in various dental products, including varnishes and gels, used in professional dental treatments.

Considerations

  • Lactose Allergy: Since CPP-ACP is derived from milk, it should be avoided by individuals with lactose intolerance or milk protein allergies.
  • Clinical Use: Dentists may recommend CPP-ACP products for patients at high risk for caries, those with a history of dental decay, or individuals undergoing orthodontic treatment.

 

Inlay Preparation

Inlay preparations are a common restorative procedure in dentistry, particularly for Class II restorations.

1. Definitions

A. Inlay

  • An inlay is a restoration that is fabricated using an indirect procedure. It involves one or more tooth surfaces and may cap one or more cusps but does not cover all cusps.

2. Class II Inlay (Cast Metal) Preparation Procedure

A. Burs Used

  • Recommended Burs:
    • No. 271: For initial cavity preparation.
    • No. 169 L: For refining the cavity shape and creating the proximal box.

B. Initial Cavity Preparation

  • Similar to Class II Amalgam: The initial cavity preparation is performed similarly to that for Class II amalgam restorations, with the following differences:
    • Occlusal Entry Cut Depth: The initial occlusal entry should be approximately 1.5 mm deep.
    • Cavity Margins Divergence: All cavity margins must diverge occlusally by 2-5 degrees:
      • 2 degrees: When the vertical walls of the cavity are short.
      • 5 degrees: When the vertical walls are long.
    • Proximal Box Margins: The proximal box margins should clear the adjacent tooth by 0.2-0.5 mm, with 0.5 � 0.2 mm being ideal.

C. Preparation of Bevels and Flares

  • Primary and Secondary Flares:
    • Flares are created on the facial and lingual proximal walls, forming the walls in two planes.
    • The secondary flare widens the proximal box, which initially had a clearance of 0.5 mm from the adjacent tooth. This results in:
      • Marginal Metal in Embrasure Area: Placing the marginal metal in the embrasure area allows for better self-cleansing and easier access for cleaning and polishing without excessive dentin removal.
      • Marginal Metal Angle: A 40-degree angle, which is easily burnishable and strong.
      • Enamel Margin Angle: A 140-degree angle, which blunts the enamel margin and increases its strength.
    • Note: Secondary flares are omitted on the mesiofacial proximal walls of maxillary premolars and first molars for esthetic reasons.

D. Gingival Bevels

  • Width: Gingival bevels should be 0.5-1 mm wide and blend with the secondary flare, resulting in a marginal metal angle of 30 degrees.
  • Purpose:
    • Removal of weak enamel.
    • Creation of a burnishable 30-degree marginal metal.
    • Production of a lap sliding fit at the gingival margin.

E. Occlusal Bevels

  • Location: Present on the cavosurface margins of the cavity on the occlusal surface.
  • Width: Approximately 1/4th the depth of the respective wall, resulting in a marginal metal angle of 40 degrees.

3. Capping Cusps

A. Indications

  • Cusp Involvement: Capping cusps is indicated when more than 1/2 of a cusp is involved and is mandatory when 2/3 or more is involved.

B. Advantages

  • Weak Enamel Removal: Helps in removing weak enamel.
  • Cavity Margin Location: Moves the cavity margin away from occlusal areas subjected to heavy forces.
  • Visualization of Caries: Aids in visualizing the extent of caries, increasing convenience during preparation.

C. Cusp Reduction

  • Uniform Metal Thickness: Cusp reduction must provide for a uniform 1.5 mm metal thickness over the reduced cusps.
  • Facial Cusp Reduction: For maxillary premolars and first molars, the reduction of the facial cusp should be 0.75-1 mm for esthetic reasons.

D. Reverse Bevel (Counter Bevel)

  • Definition: A bevel given on the margins of the reduced cusp.
  • Width: Varies to extend beyond any occlusal contact with opposing teeth, resulting in a marginal metal angle of 30 degrees.

E. Retention Considerations

  • Retention Form: Cusp reduction decreases the retention form due to reduced vertical wall height. Therefore, proximal retentive grooves are usually recommended.
  • Collar and Skirt Features: These features can enhance retention and resistance form.

Dental Burs: Design, Function, and Performance

Dental burs are essential tools in operative dentistry, used for cutting, shaping, and finishing tooth structure and restorative materials. This guide will cover the key features of dental burs, including blade design, rake angle, clearance angle, run-out, and performance characteristics.

1. Blade Design and Flutes

A. Blade Configuration

  • Blades and Flutes: Blades on a bur are uniformly spaced, with depressed areas between them known as flutes. The design of the blades and flutes affects the cutting efficiency and smoothness of the bur's action.
  • Number of Blades:
    • The number of blades on a bur is always even.
    • Excavating Burs: Typically have 6-10 blades, designed for efficient material removal.
    • Finishing Burs: Have 12-40 blades, providing a smoother finish.

B. Cutting Efficiency

  • Smoother Cutting Action: A greater number of blades results in a smoother cutting action at low speeds.
  • Reduced Efficiency: As the number of blades increases, the space between subsequent blades decreases, leading to less surface area being cut and reduced efficiency.

2. Vibration Characteristics

A. Vibration and Patient Comfort

  • Vibration Frequency: Vibrations over 1,300 cycles per second are generally imperceptible to patients.
  • Effect of Blade Number: Fewer blades on a bur tend to produce greater vibrations, which can affect patient comfort.
  • RPM and Vibration: Higher RPMs produce less amplitude and greater frequency of vibration, contributing to a smoother experience for the patient.

3. Rake Angle

A. Definition

  • Rake Angle: The angle that the face of the blade makes with a radial line from the center of the bur to the blade.

B. Cutting Efficiency

  • Positive Rake Angle: Burs with a positive rake angle are generally desired for cutting efficiency.
  • Rake Angle Hierarchy: The cutting efficiency is ranked as follows:
    • Positive rake > Radial rake > Negative rake
  • Clogging: Burs with a positive rake angle may experience clogging due to debris accumulation.

4. Clearance Angle

A. Definition

  • Clearance Angle: This angle provides clearance between the working edge and the cutting edge of the bur, allowing for effective cutting without binding.

5. Run-Out

A. Definition

  • Run-Out: Refers to the eccentricity or maximum displacement of the bur head from its axis of rotation.
  • Acceptable Value: The average value of clinically acceptable run-out is about 0.023 mm. Excessive run-out can lead to uneven cutting and discomfort for the patient.

6. Load Characteristics

A. Load Applied by Dentist

  • Low Speed: The minimum and maximum load applied through the bur is typically between 100 � 1500 grams.
  • High Speed: For high-speed burs, the load is generally between 60 � 120 grams.

7. Diamond Stones

A. Abrasive Efficiency

  • Diamond Stones: These are the hardest and most efficient abrasive stones available for removing tooth enamel. They are particularly effective for cutting and finishing hard dental materials.

Mercury Release in Dental Procedures Involving Amalgam

Mercury is a key component of dental amalgam, and its release during various dental procedures has been a topic of concern due to potential health risks. Understanding the amounts of mercury released during different stages of amalgam handling is essential for dental professionals to implement safety measures and minimize exposure.

1. Mercury Release Quantification

A. Trituration

  • Amount Released: 1-2 �g
  • Description: Trituration is the process of mixing mercury with alloy particles to form a homogenous amalgam. During this process, small amounts of mercury can be released into the air, which can contribute to overall exposure.

B. Placement of Amalgam Restoration

  • Amount Released: 6-8 �g
  • Description: When placing an amalgam restoration, additional mercury may be released due to the manipulation of the material. This includes the handling and packing of the amalgam into the cavity preparation.

C. Dry Polishing

  • Amount Released: 44 �g
  • Description: Dry polishing of amalgam restorations generates the highest amount of mercury release among the listed procedures. The friction and heat generated during dry polishing can vaporize mercury, leading to increased exposure.

D. Wet Polishing

  • Amount Released: 2-4 �g
  • Description: Wet polishing, which involves the use of water to cool the restoration during polishing, results in significantly lower mercury release compared to dry polishing. The water helps to capture and reduce the amount of mercury vapor released into the air.

Explore by Exams