Talk to us?

- NEETMDS- courses
NEET MDS Lessons
Conservative Dentistry

Surface Preparation for Mechanical Bonding

Methods for Producing Surface Roughness

  • Grinding and Etching: The common methods for creating surface roughness to enhance mechanical bonding include grinding or etching the surface.
    • Grinding: This method produces gross mechanical roughness but leaves a smear layer of hydroxyapatite crystals and denatured collagen approximately 1 to 3 µm thick.
    • Etching: Etching can remove the smear layer and create a more favorable surface for bonding.

Importance of Surface Preparation

  • Proper surface preparation is critical for achieving effective mechanical bonding between dental materials, ensuring the longevity and success of restorations.

Electrochemical Corrosion

Electrochemical corrosion is a significant phenomenon that can affect the longevity and integrity of dental materials, particularly in amalgam restorations. Understanding the mechanisms of corrosion, including the role of electromotive force (EMF) and the specific reactions that occur at the margins of restorations, is essential for dental clinics

1. Electrochemical Corrosion and Creep

A. Definition

  • Electrochemical Corrosion: This type of corrosion occurs when metals undergo oxidation and reduction reactions in the presence of an electrolyte, leading to the deterioration of the material.

B. Creep at Margins

  • Creep: In the context of dental amalgams, creep refers to the slow, permanent deformation of the material at the margins of the restoration. This can lead to the extrusion of material at the margins, compromising the seal and integrity of the restoration.

C. Mercuroscopic Expansion

  • Mercuroscopic Expansion: This phenomenon occurs when mercury from the amalgam (specifically from the Sn7-8 Hg phase) reacts with Ag3Sn particles. The reaction produces further expansion, which can exacerbate the issues related to creep and marginal integrity.

2. Electromotive Force (EMF) Series

A. Definition

  • Electromotive Force (EMF) Series: The EMF series is a classification of elements based on their tendency to dissolve in water. It ranks metals according to their standard electrode potentials, which indicate how easily they can be oxidized.

B. Importance in Corrosion

  • Dissolution Tendencies: The EMF series helps predict which metals are more likely to corrode when in contact with other metals or electrolytes. Metals higher in the series have a greater tendency to lose electrons and dissolve, making them more susceptible to corrosion.

C. Calculation of Potential Values

  • Standard Conditions: The potential values in the EMF series are calculated under standard conditions, specifically:
    • One Atomic Weight: Measured in grams.
    • 1000 mL of Water: The concentration of ions is considered in a liter of water.
    • Temperature: Typically at 25°C (298 K).

3. Implications for Dental Practice

A. Material Selection

  • Understanding the EMF series can guide dental professionals in selecting materials that are less prone to corrosion when used in combination with other metals, such as in restorations or prosthetics.

B. Prevention of Corrosion

  • Proper Handling: Careful handling and placement of amalgam restorations can minimize the risk of electrochemical corrosion.
  • Avoiding Dissimilar Metals: Reducing the use of dissimilar metals in close proximity can help prevent galvanic corrosion, which can occur when two different metals are in contact in the presence of an electrolyte.

C. Monitoring and Maintenance

  • Regular monitoring of restorations for signs of marginal breakdown or corrosion can help in early detection and intervention, preserving the integrity of dental work.

Cutting Edge Mechanics

Edge Angles and Their Importance

  • Edge Angle: The angle formed at the cutting edge of a bur blade. Increasing the edge angle reinforces the cutting edge, which helps to reduce the likelihood of blade fracture during use.
  • Reinforcement: A larger edge angle provides more material at the cutting edge, enhancing its strength and durability.

Carbide vs. Steel Burs

  • Carbide Burs:
    • Hardness and Wear Resistance: Carbide burs are known for their higher hardness and wear resistance compared to steel burs. This makes them suitable for cutting through hard dental tissues.
    • Brittleness: However, carbide burs are more brittle than steel burs, which means they are more prone to fracture if not designed properly.
    • Edge Angles: To minimize the risk of fractures, carbide burs require greater edge angles. This design consideration is crucial for maintaining the integrity of the bur during clinical procedures.

Interdependence of Angles

  • Three Angles: The cutting edge of a bur is defined by three angles: the edge angle, the clearance angle, and the rake angle. These angles cannot be varied independently of each other.
    • Clearance Angle: An increase in the clearance angle (the angle between the cutting edge and the surface being cut) results in a decrease in the edge angle. This relationship is important for optimizing cutting efficiency and minimizing wear on the bur.

Continuous Retention Groove Preparation

Purpose and Technique

  • Retention Groove: A continuous retention groove is prepared in the internal portion of the external walls of a cavity preparation to enhance the retention of restorative materials, particularly when maximum retention is anticipated.
  • Bur Selection: A No. ¼ round bur is used for this procedure.
  • Location and Depth:
    • The groove is located 0.25 mm (half the diameter of the No. ¼ round bur) from the root surface.
    • It is prepared to a depth of 0.25 mm, ensuring that it does not compromise the integrity of the tooth structure.
  • Direction: The groove should be directed as the bisector of the angle formed by the junction of the axial wall and the external wall. This orientation maximizes the surface area for bonding and retention.

Clinical Implications

  • Enhanced Retention: The continuous groove provides additional mechanical retention, which is particularly beneficial in cases where the cavity preparation is large or when the restorative material has a tendency to dislodge.
  • Consideration of Tooth Structure: Care must be taken to avoid excessive removal of tooth structure, which could compromise the tooth's strength.

Early Childhood Caries (ECC) Classification

Early Childhood Caries (ECC) is a significant public health concern characterized by the presence of carious lesions in young children. It is classified into three types based on severity, affected teeth, and underlying causes. Understanding these classifications helps in diagnosing, preventing, and managing ECC effectively.

Type I ECC (Mild to Moderate)

A. Characteristics

  • Affected Teeth: Carious lesions primarily involve the molars and incisors.
  • Age Group: Typically observed in children aged 2 to 5 years.

B. Causes

  • Dietary Factors: The primary cause is usually a combination of cariogenic semisolid or solid foods, such as sugary snacks and beverages.
  • Oral Hygiene: Lack of proper oral hygiene practices contributes significantly to the development of caries.
  • Progression: As the cariogenic challenge persists, the number of affected teeth tends to increase.

C. Clinical Implications

  • Management: Emphasis on improving oral hygiene practices and dietary modifications can help control and reverse early carious lesions.

Type II ECC (Moderate to Severe)

A. Characteristics

  • Affected Teeth: Labio-lingual carious lesions primarily affect the maxillary incisors, with or without molar caries, depending on the child's age.
  • Age Group: Typically seen soon after the first tooth erupts.

B. Causes

  • Feeding Practices: Common causes include inappropriate use of feeding bottles, at-will breastfeeding, or a combination of both.
  • Oral Hygiene: Poor oral hygiene practices exacerbate the condition.
  • Progression: If not controlled, Type II ECC can progress to more advanced stages of caries.

C. Clinical Implications

  • Intervention: Early intervention is crucial, including education on proper feeding practices and oral hygiene to prevent further carious development.

Type III ECC (Severe)

A. Characteristics

  • Affected Teeth: Carious lesions involve almost all teeth, including the mandibular incisors.
  • Age Group: Usually observed in children aged 3 to 5 years.

B. Causes

  • Multifactorial: The etiology is a combination of various factors, including poor oral hygiene, dietary habits, and possibly socio-economic factors.
  • Rampant Nature: This type of ECC is rampant and can affect immune tooth surfaces, leading to extensive decay.

C. Clinical Implications

  • Management: Requires comprehensive dental treatment, including restorative procedures and possibly extractions. Education on preventive measures and regular dental visits are essential to manage and prevent recurrence.

Gingival Seat in Class II Restorations

The gingival seat is a critical component of Class II restorations, particularly in ensuring proper adaptation and retention of the restorative material. This guide outlines the key considerations for the gingival seat in Class II restorations, including its extension, clearance, beveling, and wall placement.

1. Extension of the Gingival Seat

A. Apical Extension

  • Apical to Proximal Contact or Caries: The gingival seat should extend apically to the proximal contact point or the extent of caries, whichever is greater. This ensures that all carious tissue is removed and that the restoration has adequate retention.

2. Clearance from Adjacent Tooth

A. Clearance Requirement

  • Adjacent Tooth Clearance: The gingival seat should clear the adjacent tooth by approximately 0.5 mm. This clearance is essential to prevent damage to the adjacent tooth and to allow for proper adaptation of the restorative material.

3. Beveling of the Gingival Margin

A. Bevel Angles

  • Amalgam Restorations: For amalgam restorations, the gingival margin is typically beveled at an angle of 15-20 degrees. This bevel helps to improve the adaptation of the amalgam and reduce the risk of marginal failure.

  • Cast Restorations: For cast restorations, the gingival margin is beveled at a steeper angle of 30-40 degrees. This angle enhances the strength of the margin and provides better retention for the cast material.

B. Contraindications for Beveling

  • Root Surface Location: If the gingival seat is located on the root surface, beveling is contraindicated. This is to maintain the integrity of the root surface and avoid compromising the periodontal attachment.

4. Wall Placement

A. Facial and Lingual Walls

  • Extension of Walls: The facial and lingual walls of the proximal box should be extended such that they clear the adjacent tooth by 0.2-0.3 mm. This clearance helps to ensure that the restoration does not impinge on the adjacent tooth and allows for proper contouring of the restoration.

B. Embrasure Placement

  • Placement in Embrasures: The facial and lingual walls should be positioned in their respective embrasures. This placement helps to optimize the aesthetics and function of the restoration while providing adequate support.

Beveling in Restorative Dentistry

Beveling: Beveling refers to the process of angling the edges of a cavity preparation to create a smooth transition between the tooth structure and the restorative material. This technique can enhance the aesthetics and retention of certain materials.

Characteristics of Ceramic Materials

  • Brittleness: Ceramic materials, such as porcelain, are inherently brittle and can be prone to fracture under stress.
  • Bonding Mechanism: Ceramics rely on adhesive bonding to tooth structure, which can be compromised by beveling.

Contraindications

  • Cavosurface Margins: Beveling the cavosurface margins of ceramic restorations is contraindicated because:
    • It can weaken the bond between the ceramic and the tooth structure.
    • It may create unsupported enamel, increasing the risk of chipping or fracture of the ceramic material.

Beveling with Amalgam Restorations

Amalgam Characteristics

  • Strength and Durability: Amalgam is a strong and durable material that can withstand significant occlusal forces.
  • Retention Mechanism: Amalgam relies on mechanical retention rather than adhesive bonding.

Beveling Guidelines

  • General Contraindications: Beveling is generally contraindicated when using amalgam, as it can reduce the mechanical retention of the restoration.
  • Exception for Class II Preparations:
    • Gingival Floor Beveling: In Class II preparations where enamel is still present, a slight bevel (approximately 15 to 20 degrees) may be placed on the gingival floor. This is done to:
      • Remove unsupported enamel rods, which can lead to enamel fracture.
      • Enhance the seal between the amalgam and the tooth structure, improving the longevity of the restoration.

Technique for Beveling

  • Preparation: When beveling the gingival floor:
    • Use a fine diamond bur or a round bur to create a smooth, angled surface.
    • Ensure that the bevel is limited to the enamel portion of the wall to maintain the integrity of the underlying dentin.

Clinical Implications

A. Material Selection

  • Understanding the properties of the restorative material is essential for determining the appropriate preparation technique.
  • Clinicians should be aware of the contraindications for beveling based on the material being used to avoid compromising the restoration's success.

B. Restoration Longevity

  • Proper preparation techniques, including appropriate beveling when indicated, can significantly impact the longevity and performance of restorations.
  • Regular monitoring of restorations is essential to identify any signs of failure or degradation, particularly in areas where beveling has been performed.

Explore by Exams