Talk to us?

- NEETMDS- courses
NEET MDS Lessons
Conservative Dentistry

Mercury Exposure and Safety

Concentrations of Mercury in Air

  • Typical Levels: Mercury concentrations in air can vary significantly:
    • Pure air: 0.002 µg/m³
    • Urban air: 0.05 µg/m³
    • Air near industrial parks: 3 µg/m³
    • Air in mercury mines: 300 µg/m³
  • Threshold Limit Value (TLV): The generally accepted TLV for exposure to mercury vapor for a 40-hour work week is 50 µg/m³. Understanding these levels is crucial for ensuring safety in dental practices where amalgam is used.

Effects of Acid Etching on Enamel

Acid etching is a critical step in various dental procedures, particularly in the bonding of restorative materials to tooth structure. This process modifies the enamel surface to enhance adhesion and improve the effectiveness of dental materials. Below are the key effects of acid etching on enamel:

1. Removal of Pellicle

  • Pellicle Removal: Acid etching effectively removes the acquired pellicle, a thin film of proteins and glycoproteins that forms on the enamel surface after tooth cleaning.
  • Exposure of Inorganic Crystalline Component: By removing the pellicle, the underlying inorganic crystalline structure of the enamel is exposed, allowing for better interaction with bonding agents.

2. Creation of a Porous Layer

  • Porous Layer Formation: Acid etching creates a porous layer on the enamel surface.
  • Depth of Pores: The depth of these pores typically ranges from 5 to 10 micrometers (µm), depending on the concentration and duration of the acid application.
  • Increased Surface Area: The formation of these pores increases the surface area available for bonding, enhancing the mechanical retention of restorative materials.

3. Increased Wettability

  • Wettability Improvement: Acid etching increases the wettability of the enamel surface.
  • Significance: Improved wettability allows bonding agents to spread more easily over the etched surface, facilitating better adhesion and reducing the risk of voids or gaps.

4. Increased Surface Energy

  • Surface Energy Elevation: The etching process raises the surface energy of the enamel.
  • Impact on Bonding: Higher surface energy enhances the ability of bonding agents to adhere to the enamel, promoting a stronger bond between the tooth structure and the restorative material.

Nursing Caries and Rampant Caries

Nursing caries and rampant caries are both forms of dental caries that can lead to significant oral health issues, particularly in children.

Nursing Caries

  • Nursing Caries: A specific form of rampant caries that primarily affects infants and toddlers, characterized by a distinct pattern of decay.

Age of Occurrence

  • Age Group: Typically seen in infants and toddlers, particularly those who are bottle-fed or breastfed on demand.

Dentition Involved

  • Affected Teeth: Primarily affects the primary dentition, especially the maxillary incisors and molars. Notably, the mandibular incisors are usually spared.

Characteristic Features

  • Decay Pattern:
    • Involves maxillary incisors first, followed by molars.
    • Mandibular incisors are not affected due to protective factors.
  • Rapid Lesion Development: New lesions appear quickly, indicating acute decay rather than chronic neglect.

Etiology

  • Feeding Practices:
    • Improper feeding practices are the primary cause, including:
      • Bottle feeding before sleep.
      • Pacifiers dipped in honey or other sweeteners.
      • Prolonged at-will breastfeeding.

Treatment

  • Early Detection: If detected early, nursing caries can be managed with:
    • Topical fluoride applications.
    • Education for parents on proper feeding and oral hygiene.
  • Maintenance: Focus on maintaining teeth until the transition to permanent dentition occurs.

Prevention

  • Education: Emphasis on educating prospective and new mothers about proper feeding practices and oral hygiene to prevent nursing caries.

Rampant Caries

  • Rampant Caries: A more generalized and acute form of caries that can occur at any age, characterized by widespread decay and early pulpal involvement.

Age of Occurrence

  • Age Group: Can be seen at all ages, including adolescence and adulthood.

Dentition Involved

  • Affected Teeth: Affects both primary and permanent dentition, including teeth that are typically resistant to decay.

Characteristic Features

  • Decay Pattern:
    • Involves surfaces that are usually immune to decay, including mandibular incisors.
    • Rapid appearance of new lesions, indicating a more aggressive form of caries.

Etiology

  • Multifactorial Causes: Rampant caries is influenced by a combination of factors, including:
    • Frequent snacking and excessive intake of sticky refined carbohydrates.
    • Decreased salivary flow.
    • Genetic predisposition.

Treatment

  • Pulp Therapy:
    • Often requires more extensive treatment, including pulp therapy for teeth with multiple pulp exposures.
    • Long-term treatment may be necessary, especially when permanent dentition is involved.

Prevention

  • Mass Education: Dental health education should be provided at a community level, targeting individuals of all ages to promote good oral hygiene and dietary practices.

Key Differences

Mandibular Anterior Teeth

  • Nursing Caries: Mandibular incisors are spared due to:
    1. Protection from the tongue.
    2. Cleaning action of saliva, aided by the proximity of the sublingual gland ducts.
  • Rampant Caries: Mandibular incisors can be affected, as this condition does not spare teeth that are typically resistant to decay.

Various dyes have been tried to detect carious enamel, each having some Advantages and Disadvantages:

‘Procion’ dyes stain enamel lesions but the staining becomes irreversible because the dye reacts with nitrogen and hydroxyl groups of enamel and acts as a fixative.

‘Calcein’ dye makes a complex with calcium and remains bound to the lesion.

‘Fluorescent dye’ like Zyglo ZL-22 has been used in vitro which is not suitable in vivo. The dye is made visible by ultraviolet illumination.

‘Brilliant blue’ has also been used to enhance the diagnostic quality of fiberoptic transillumination.

Bases in Restorative Dentistry

Bases are an essential component in restorative dentistry, serving as a thicker layer of material placed beneath restorations to provide additional protection and support to the dental pulp and surrounding structures. Below is an overview of the characteristics, objectives, and types of bases used in dental practice.

1. Characteristics of Bases

A. Thickness

  • Typical Thickness: Bases are generally thicker than liners, typically ranging from 1 to 2 mm. Some bases may be around 0.5 to 0.75 mm thick.

B. Functions

  • Thermal Protection: Bases provide thermal insulation to protect the pulp from temperature changes that can occur during and after the placement of restorations.
  • Mechanical Support: They offer supplemental mechanical support for the restoration by distributing stress on the underlying dentin surface. This is particularly important during procedures such as amalgam condensation, where forces can be applied to the restoration.

2. Objectives of Using Bases

The choice of base material and its application depend on the Remaining Dentin Thickness (RDT), which is a critical factor in determining the need for a base:

  • RDT > 2 mm: No base is required, as there is sufficient dentin to protect the pulp.
  • RDT 0.5 - 2 mm: A base is indicated, and the choice of material depends on the restorative material being used.
  • RDT < 0.5 mm: Calcium hydroxide (Ca(OH)₂) or Mineral Trioxide Aggregate (MTA) should be used to promote the formation of reparative dentin, as the remaining dentin is insufficient to provide adequate protection.

3. Types of Bases

A. Common Base Materials

  • Zinc Phosphate (ZnPO₄): Known for its good mechanical properties and thermal insulation.
  • Glass Ionomer Cement (GIC): Provides thermal protection and releases fluoride, which can help in preventing caries.
  • Zinc Polycarboxylate: Offers good adhesion to tooth structure and provides thermal insulation.

B. Properties

  • Mechanical Protection: Bases distribute stress effectively, reducing the risk of fracture in the restoration and protecting the underlying dentin.
  • Thermal Insulation: Bases are poor conductors of heat and cold, helping to maintain a stable temperature at the pulp level.

Resin Modified Glass Ionomer Cements (RMGIs)

Resin Modified Glass Ionomer Cements (RMGIs) represent a significant advancement in dental materials, combining the beneficial properties of both glass ionomer cements and composite resins. This overview will discuss the composition, advantages, and disadvantages of RMGIs, highlighting their role in modern dentistry.

1. Composition of Resin Modified Glass Ionomer Cements

A. Introduction

  • First Introduced: RMGIs were first introduced as Vitrebond (3M), utilizing a powder-liquid system designed to enhance the properties of traditional glass ionomer cements.

B. Components

  • Powder: The powder component consists of fluorosilicate glass, which provides the material with its glass ionomer properties. It also contains a photoinitiator or chemical initiator to facilitate setting.
  • Liquid: The liquid component contains:
    • 15 to 25% Resin Component: Typically in the form of Hydroxyethyl Methacrylate (HEMA), which enhances the material's bonding and aesthetic properties.
    • Polyacrylic Acid Copolymer: This component contributes to the chemical adhesion properties of the cement.
    • Photoinitiator and Water: These components are essential for the setting reaction and workability of the material.

2. Advantages of Resin Modified Glass Ionomer Cements

RMGIs offer a range of benefits that make them suitable for various dental applications:

  1. Extended Working Time: RMGIs provide a longer working time compared to traditional glass ionomers, allowing for more flexibility during placement.

  2. Control on Setting: The setting reaction can be controlled through light curing, which allows for adjustments before the material hardens.

  3. Good Adaptation: RMGIs exhibit excellent adaptation to tooth structure, which helps minimize gaps and improve the seal.

  4. Chemical Adhesion to Enamel and Dentin: RMGIs bond chemically to both enamel and dentin, enhancing retention and reducing the risk of microleakage.

  5. Fluoride Release: Like traditional glass ionomers, RMGIs release fluoride, which can help in the prevention of secondary caries.

  6. Improved Aesthetics: The resin component allows for better color matching and aesthetics compared to conventional glass ionomers.

  7. Low Interfacial Shrinkage Stress: RMGIs exhibit lower shrinkage stress upon setting compared to composite resins, reducing the risk of debonding or gap formation.

  8. Superior Strength Characteristics: RMGIs generally have improved mechanical properties, making them suitable for a wider range of clinical applications.

3. Disadvantages of Resin Modified Glass Ionomer Cements

Despite their advantages, RMGIs also have some limitations:

  1. Shrinkage on Setting: RMGIs can experience some degree of shrinkage during the setting process, which may affect the marginal integrity of the restoration.

  2. Limited Depth of Cure: The depth of cure can be limited, especially when using more opaque lining cements. This can affect the effectiveness of the material in deeper cavities.

Amalgam Bonding Agents

Amalgam bonding agents can be classified into several categories based on their composition and mechanism of action:

A. Adhesive Systems

  • Total-Etch Systems: These systems involve etching both enamel and dentin with phosphoric acid to create a rough surface that enhances mechanical retention. After etching, a bonding agent is applied to the prepared surface before the amalgam is placed.
  • Self-Etch Systems: These systems combine etching and bonding in one step, using acidic monomers that partially demineralize the tooth surface while simultaneously promoting bonding. They are less technique-sensitive than total-etch systems.

B. Glass Ionomer Cements

  • Glass ionomer cements can be used as a base or liner under amalgam restorations. They bond chemically to both enamel and dentin, providing a good seal and some degree of fluoride release, which can help in caries prevention.

C. Resin-Modified Glass Ionomers

  • These materials combine the properties of glass ionomer cements with added resins to improve their mechanical properties and bonding capabilities. They can be used as a liner or base under amalgam restorations.

Mechanism of Action

A. Mechanical Retention

  • Amalgam bonding agents create a roughened surface on the tooth structure, which increases the surface area for mechanical interlocking between the amalgam and the tooth.

B. Chemical Bonding

  • Some bonding agents form chemical bonds with the tooth structure, particularly with dentin. This chemical interaction can enhance the overall retention of the amalgam restoration.

C. Sealing the Interface

  • By sealing the interface between the amalgam and the tooth, bonding agents help prevent microleakage, which can lead to secondary caries and postoperative sensitivity.

Applications of Amalgam Bonding Agents

A. Sealing Tooth Preparations

  • Bonding agents are used to seal the cavity preparation before the placement of amalgam, reducing the risk of microleakage and enhancing the longevity of the restoration.

B. Bonding New to Old Amalgam

  • When repairing or replacing an existing amalgam restoration, bonding agents can be used to bond new amalgam to the old amalgam, improving the overall integrity of the restoration.

C. Repairing Marginal Defects

  • Bonding agents can be applied to repair marginal defects in amalgam restorations, helping to restore the seal and prevent further deterioration.

Clinical Considerations

A. Technique Sensitivity

  • The effectiveness of amalgam bonding agents can be influenced by the technique used during application. Proper surface preparation, including cleaning and drying the tooth structure, is essential for optimal bonding.

B. Moisture Control

  • Maintaining a dry field during the application of bonding agents is critical. Moisture contamination can compromise the bond strength and lead to restoration failure.

C. Material Compatibility

  • It is important to ensure compatibility between the bonding agent and the amalgam used. Some bonding agents may not be suitable for all types of amalgam, so clinicians should follow manufacturer recommendations.

D. Longevity and Performance

  • While amalgam bonding agents can enhance the performance of amalgam restorations, their long-term effectiveness can vary. Regular monitoring of restorations is essential to identify any signs of failure or degradation.

Explore by Exams