NEET MDS Lessons
Conservative Dentistry
CPP-ACP, or casein phosphopeptide-amorphous calcium phosphate, is a significant compound in dentistry, particularly in the prevention and management of dental caries (tooth decay).
Role and applications in dentistry:
Composition and Mechanism
- Composition: CPP-ACP is derived from casein, a milk protein. It contains clusters of calcium and phosphate ions that are stabilized by casein phosphopeptides.
- Mechanism: The unique structure of CPP-ACP allows it to stabilize calcium and phosphate in a soluble form, which can be delivered to the tooth surface. When applied to the teeth, CPP-ACP can release these ions, promoting the remineralization of enamel and dentin, especially in early carious lesions.
Benefits in Dentistry
- Remineralization: CPP-ACP helps in the remineralization of demineralized enamel, making it an effective treatment for early carious lesions.
- Caries Prevention: Regular use of CPP-ACP can help prevent the development of caries by maintaining a higher concentration of calcium and phosphate in the oral environment.
- Reduction of Sensitivity: It can help reduce tooth sensitivity by occluding dentinal tubules and providing a protective layer over exposed dentin.
- pH Buffering: CPP-ACP can help buffer the pH in the oral cavity, reducing the risk of acid-induced demineralization.
- Compatibility with Fluoride: CPP-ACP can be used in conjunction with fluoride, enhancing the overall effectiveness of caries prevention strategies.
Applications
- Toothpaste: Some toothpaste formulations include CPP-ACP to enhance remineralization and provide additional protection against caries.
- Chewing Gum: Sucrose-free chewing gums containing CPP-ACP can be used to promote oral health, especially after meals.
- Dental Products: CPP-ACP is also found in various dental products, including varnishes and gels, used in professional dental treatments.
Considerations
- Lactose Allergy: Since CPP-ACP is derived from milk, it should be avoided by individuals with lactose intolerance or milk protein allergies.
- Clinical Use: Dentists may recommend CPP-ACP products for patients at high risk for caries, those with a history of dental decay, or individuals undergoing orthodontic treatment.
Cutting Edge Mechanics
Edge Angles and Their Importance
- Edge Angle: The angle formed at the cutting edge of a bur blade. Increasing the edge angle reinforces the cutting edge, which helps to reduce the likelihood of blade fracture during use.
- Reinforcement: A larger edge angle provides more material at the cutting edge, enhancing its strength and durability.
Carbide vs. Steel Burs
- Carbide Burs:
- Hardness and Wear Resistance: Carbide burs are known for their higher hardness and wear resistance compared to steel burs. This makes them suitable for cutting through hard dental tissues.
- Brittleness: However, carbide burs are more brittle than steel burs, which means they are more prone to fracture if not designed properly.
- Edge Angles: To minimize the risk of fractures, carbide burs require greater edge angles. This design consideration is crucial for maintaining the integrity of the bur during clinical procedures.
Interdependence of Angles
- Three Angles: The cutting edge of a bur is defined by
three angles: the edge angle, the clearance angle, and the rake angle. These
angles cannot be varied independently of each other.
- Clearance Angle: An increase in the clearance angle (the angle between the cutting edge and the surface being cut) results in a decrease in the edge angle. This relationship is important for optimizing cutting efficiency and minimizing wear on the bur.
Condensers/pluggers are instruments used to deliver the forces of compaction to the underlying restorative material. There are
several methods for the application of these forces:
1.
Hand pressure: use of this method alone is contraindicated except in a few situations like adapting the first piece of gold tothe convenience or point angles and where the line of force will not permit use of other methods. Powdered golds are also
known to be better condensed with hand pressure. Small condenser points of 0.5 mm in diameter are generally
recommended as they do not require very high forces for their manipulation.
2.
Hand malleting: Condensation by hand malleting is a team work in which the operator directs the condenser and moves itover the surface, while the assistant provides rhythmic blows from the mallet. Long handled condensers and leather faced
mallets (50 gms in weight) are used for this purpose. The technique allows greater control and the condensers can be
changed rapidly when required. However, with the introduction of mechanical malleting, use of this method has decreased
considerably.
3.
Automatic hand malleting: This method utilizes a spring loaded instrument that delivers the desired force once the spiralspring is released. (Disadvantage is that the blow descends very rapidly even before full pressure has been exerted on the
condenser point.
4.
Electric malleting (McShirley electromallet): This instrument accommodates various shapes of con-denser points and has amallet in the handle itself which remains dormant until wished by the operator to function. The intensity or amplitude
generated can vary from 0.2 ounces to 15 pounds and the frequency can range from 360-3600 cycles/minute.
5.
Pneumatic malleting (Hollenback condenser): This is the most recent and satisfactory method first developed byDr. George M. Hollenback. Pneumatic mallets consist of vibrating nit condensers and detachable tips run by
compressed air. The air is carried through a thin rubber tubing attached to the hand piece. Controlling the air
pressure by a rheostat nit allows adjusting the frequency and amplitude of condensation strokes. The construction
of the handpiece is such that the blow does not fall until pressure is placed on the condenser point. This continues
until released. Pneumatic mallets are available with both straight and angled for handpieces.
Pit and Fissure Sealants
Pit and fissure sealants are preventive dental materials applied to the occlusal surfaces of teeth to prevent caries in the pits and fissures. These sealants work by filling in the grooves and depressions on the tooth surface, thereby eliminating the sheltered environment where bacteria can thrive and cause decay.
Classification
Mitchell and Gordon (1990) classified pit and fissure sealants based on their composition and properties. While the specific classification details are not provided in the prompt, sealants can generally be categorized into:
- Resin-Based Sealants: These are the most common type, made from composite resins that provide good adhesion and durability.
- Glass Ionomer Sealants: These sealants release fluoride and bond chemically to the tooth structure, providing additional protection against caries.
- Polyacid-Modified Resin Sealants: These combine properties of both resin and glass ionomer sealants, offering improved adhesion and fluoride release.
Requisites of an Efficient Sealant
For a pit and fissure sealant to be effective, it should possess the following characteristics:
- Viscosity: The sealant should be viscous enough to penetrate deep into pits and fissures.
- Adequate Working Time: Sufficient time for application and manipulation before curing.
- Low Sorption and Solubility: The material should have low water sorption and solubility to maintain its integrity in the oral environment.
- Rapid Cure: Quick curing time to allow for efficient application and patient comfort.
- Good Adhesion: Strong and prolonged adhesion to enamel to prevent microleakage.
- Wear Resistance: The sealant should withstand the forces of mastication without wearing away.
- Minimum Tissue Irritation: The material should be biocompatible and cause minimal irritation to oral tissues.
- Cariostatic Action: Ideally, the sealant should have properties that inhibit the growth of caries-causing bacteria.
Indications for Use
Pit and fissure sealants are indicated in the following situations:
- Newly Erupted Teeth: Particularly primary molars and permanent premolars and molars that have recently erupted (within the last 4 years).
- Open or Sticky Pits and Fissures: Teeth with pits and fissures that are not well coalesced and may trap food particles.
- Stained Pits and Fissures: Teeth with stained pits and fissures showing minimal decalcification.
Contraindications for Use
Pit and fissure sealants should not be used in the following situations:
- No Previous Caries Experience: Teeth that have no history of caries and have well-coalesced pits and fissures.
- Self-Cleansable Pits and Fissures: Wide pits and fissures that can be effectively cleaned by normal oral hygiene.
- Caries-Free for Over 4 Years: Teeth that have been caries-free for more than 4 years.
- Proximal Caries: Presence of caries on proximal surfaces, either clinically or radiographically.
- Partially Erupted Teeth: Teeth that cannot be adequately isolated during the sealing process.
Key Points for Sealant Application
Age Range for Sealant Application
- 3-4 Years of Age: Application is recommended for newly erupted primary molars.
- 6-7 Years of Age: First permanent molars typically erupt during this age, making them prime candidates for sealant application.
- 11-13 Years of Age: Second permanent molars and premolars should be considered for sealants as they erupt.
Radiographic Advancements in Caries Detection
Advancements in dental technology have significantly improved the detection and quantification of dental caries. This lecture will cover several key technologies used in caries detection, including Diagnodent, infrared and red fluorescence, DIFOTI, and QLF, as well as the film speeds used in radiographic imaging.
1. Diagnodent
-
Technology:
- Utilizes infrared laser fluorescence for the detection and quantification of dental caries, particularly effective for occlusal and smooth surface caries.
- Not as effective for detecting proximal caries.
-
Specifications:
- Operates using red light with a wavelength of 655 nm.
- Features a fiber optic cable with a handheld probe and a diode laser light source.
- The device transmits light to the handheld probe and fiber optic tip.
-
Measurement:
- Scores dental caries on a scale of 0-99.
- Fluorescence is attributed to the presence of porphyrin, a compound produced by bacteria in carious lesions.
-
Scoring Criteria:
- Score 1: <15 - No dental caries; up to half of enamel intact.
- Score 2: 15-19 - Demineralization extends into the inner half of enamel or upper third of dentin.
- Score 3: >19 - Extending into the inner portion of dentin.
2. Infrared and Red Fluorescence
- Also Known As: Midwest Caries I.D. detection handpiece.
- Technology:
- Utilizes two wavelengths:
- 880 nm - Infrared
- 660 nm - Red
- Utilizes two wavelengths:
- Application:
- Designed for use over all tooth surfaces.
- Particularly useful for detecting hidden occlusal caries.
3. DIFOTI (Digital Imaging Fiber Optic Transillumination)
- Description:
- An advancement of the Fiber Optic Transillumination (FOTI) technique.
- Application:
- Primarily used for the detection of proximal caries.
- Drawback:
- Difficulty in accurately determining the depth of the lesion.
4. QLF (Quantitative Laser Fluorescence)
- Overview:
- One of the most extensively investigated techniques for early detection of dental caries, introduced in 1978.
- Effectiveness:
- Good for detecting occlusal and smooth surface caries.
- Challenging for detecting interproximal caries.
Film Speed in Radiographic Imaging
- Film Types:
- Film D: Best film for detecting incipient caries.
- Film E: Most commonly used film in dentistry for caries detection.
- Film F: Most recommended film speed for general use.
- Film C: No longer available.
Hand Instruments - Design and Balancing
Hand instruments are essential tools in dentistry, and their design significantly impacts their effectiveness and usability. Proper balancing and angulation of these instruments are crucial for achieving optimal control and precision during dental procedures. Below is an overview of the key aspects of hand instrument design, focusing on the shank, angulation, and balancing.
1. Importance of Balancing
A. Definition of Balance
- Balanced Instruments: A hand instrument is considered balanced when the concentration of force can be applied to the blade without causing rotation in the grasp of the operator. This balance is essential for effective cutting and manipulation of tissues.
B. Achieving Balance
- Proper Angulation of Shank: The shank must be angled appropriately so that the cutting edge of the blade lies within the projected diameter of the handle. This design minimizes the tendency for the instrument to rotate during use.
- Off-Axis Blade Edge: For optimal anti-rotational design, the blade edge should be positioned off-axis by 1 to 2 mm. This slight offset helps maintain balance while allowing effective force application.
2. Shank Design
A. Definition
- Shank: The shank connects the handle to the blade of the instrument. It plays a critical role in the instrument's overall design and functionality.
B. Characteristics
- Tapering: The shank typically tapers from the handle down to the blade, which can enhance control and maneuverability.
- Surface Texture: The shank is usually smooth, round, or tapered, depending on the specific instrument design.
- Angulation: The shank may be straight or angled, allowing for various access and visibility during procedures.
C. Classification Based on Angles
Instruments can be classified based on the number of angles in the shank:
- Straight: No angle in the shank.
- Monoangle: One angle in the shank.
- Binangle: Two angles in the shank.
- Triple-Angle: Three angles in the shank.
3. Angulation and Control
A. Purpose of Angulation
- Access and Stability: The angulation of the instrument is designed to provide better access to the treatment area while maintaining stability during use.
B. Proximity to Long Axis
- Control: The closer the working point (the blade) is to the long axis of the handle, the better the control over the instrument. Ideally, the working point should be within 3 mm of the center of the long axis of the handle for optimal control.
4. Balancing Examples
A. Balanced Instrument
- Example A: When the working end of the instrument lies within 2-3 mm of the long axis of the handle, it provides effective balancing. This configuration allows the operator to apply force efficiently without losing control.
B. Unbalanced Instrument
- Example B: If the working end is positioned away from the long axis of the handle, it results in an unbalanced instrument. This design can lead to difficulty in controlling the instrument and may compromise the effectiveness of the procedure.
Proper Pin Placement in Amalgam Restorations
Principles of Pin Placement
- Strength Maintenance: Proper pin placement does not reduce the strength of amalgam restorations. The goal is to maintain the strength of the restoration regardless of the clinical problem, tooth size, or available space for pins.
- Single Unit Restoration: In modern amalgam preparations, it is essential to secure the restoration and the tooth as a single unit. This is particularly important when significant tooth structure has been lost.
Considerations for Cusp Replacement
- Cusp Replacement: If the mesiofacial wall is replaced, the mesiofacial cusp must also be replaced to ensure proper occlusal function and distribution of forces.
- Force Distribution: It is crucial to recognize that forces of occlusal loading must be distributed over a large area. If the distofacial cusp were replaced with a pin, there would be a tendency for the restoration to rotate around the mesial pins, potentially leading to displacement or failure of the restoration.